【題目】如圖,已知正方形ABCD中,E,F分別是CD,AD的中點,BE,CF交于點P.求證:
(1)BE⊥CF;
(2)AP=AB.
【答案】(1)見試題解析;(2)見試題解析
【解析】
(1) 如圖建立平面直角坐標系xOy,其中A為原點,不妨設AB=2,則 A(0,0),B(2,0),C(2,2),E(1,2),F(0,1),再求出和的坐標,再計算得=0即證
BE⊥CF.(2) 設P(x,y),再根據已知求出P,再求=4=,即證明AP=AB.
如圖建立平面直角坐標系xOy,其中A為原點,不妨設AB=2,
則A(0,0),B(2,0),C(2,2),E(1,2),F(0,1).
(1)=(1,2)-(2,0)=(-1,2),
=(0,1)-(2,2)=(-2,-1),
∵=(-1)×(-2)+2×(-1)=0,
∴,即BE⊥CF.
(2)設P(x,y),則=(x,y-1),=(-2,-1).
∵,∴-x=-2(y-1),即x=2y-2.
同理由,得y=-2x+4,代入x=2y-2,
解得x=,∴y=,即P.
∴=4=,
∴||=||,即AP=AB.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系內,已知點A(1,0,B(-1,0),圓的方程為,點為圓上的動點.
(1)求過點的圓的切線方程.
(2)求的最大值及此時對應的點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖如圖所示,考慮以下結論:
甲 | 乙 | ||||||||
8 | 0 | ||||||||
4 3 3 | 6 6 8 | 3 8 9 1 | 1 2 3 4 5 | 2 5 1 4 0 | 5 4 6 9 | 1 | 6 | 7 | 9 |
①甲運動員得分的中位數大于乙運動員
得分的中位數;
②甲運動員得分的中位數小于乙運動員
得分的中位數;
③甲運動員得分的標準差大于乙運動員
得分的標準差;
④甲運動員得分的標準差小于乙運動員
得分的標準差;
其中根據莖葉圖能得到的正確結論的編號為( )
A. ①③ B. ①④
C. ②③ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數f(x)= 的圖象關于直線x= 對稱,求角A,B.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將的圖像向左平移個單位,再向下平移1個單位,得到函數的圖像,則下列關于函數的說法中正確的個數是( )
① 函數的最小正周期是 ② 函數的一條對稱軸是
③函數的一個零點是 ④函數在區(qū)間上單調遞減
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的方程為 ,⊙C的極坐標方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com