已知直線x+ay=2a+2與直線ax+y=a+1平行,則實(shí)數(shù)a的值為________.

 

1

【解析】由平行直線斜率相等得=a,解得,a=±1,由于當(dāng)a=-1時(shí)兩直線重合,∴ a=1.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)Ρ是橢圓上的點(diǎn).若F1、F2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

求過兩點(diǎn)A(1,4)、B(3,2)且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程,并判斷點(diǎn)P(2,4)與圓的關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

直線y=2x是△ABC中∠C的平分線所在的直線,且A、B的坐標(biāo)分別為A(-4,2)、B(3,1),求頂點(diǎn)C的坐標(biāo)并判斷△ABC的形狀.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.

(1) 直線l1過點(diǎn)(-3,-1),且l1⊥l2;

(2) 直線l1與l2平行,且坐標(biāo)原點(diǎn)到l1、l2的距離相等.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

已知拋物線x2=4y的焦點(diǎn)為F,過焦點(diǎn)F且不平行于x軸的動(dòng)直線交拋物線于A、B兩點(diǎn),拋物線在A、B兩點(diǎn)處的切線交于點(diǎn)M.

(1)求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)設(shè)直線MF交該拋物線于C、D兩點(diǎn),求四邊形ACBD面積的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.

(1)求橢圓E的方程;

(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:填空題

若雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成7∶3的兩段,則此雙曲線的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù))

(1)求的最小值;

(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案