如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
(1)=1(2)存在定點(diǎn)M(1,0),
【解析】學(xué)生錯(cuò)【解析】
【解析】
(1)略
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.
因?yàn)閯?dòng)直線l與橢圓E有且只有一個(gè)公共點(diǎn)P(x0,y0),所以m≠0且Δ=0,
即64k2m2-4(4k2+3)(4m2-12)=0,化簡得4k2-m2+3=0.(*)
此時(shí)x0=-=-,y0=kx0+m=,所以P.
由得Q(4,4k+m).
假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,由圖形對稱性知,點(diǎn)M必在x軸上.
設(shè)M(x1,0),則·=0對滿足(*)式的m,k恒成立.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719471910822173/SYS201411171947224364549049_DA/SYS201411171947224364549049_DA.008.png">=,=(4-x1,4k+m),
由·=0,得--4x1+++3=0,
整理,得(4x1-4)+-4x1+3=0.(**),方程無解.
故不存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M.
審題引導(dǎo):(1)建立方程組求解參數(shù)a,b,c;(2)恒成立問題的求解;(3)探索性問題的一般解題思路.
規(guī)范解答:【解析】
(1)因?yàn)锳B+AF2+BF2=8,
即AF1+F1B+AF2+BF2=8,(1分)
又AF1+AF2=BF1+BF2=2a,(2分)
所以4a=8,a=2.又因?yàn)閑=,即=,所以c=1,(3分)
所以b==.故橢圓E的方程是=1.(4分)
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.(5分)
因?yàn)閯?dòng)直線l與橢圓E有且只有一個(gè)公共點(diǎn)P(x0,y0),所以m≠0且Δ=0,(6分)
即64k2m2-4(4k2+3)(4m2-12)=0,化簡得4k2-m2+3=0.(*)(7分)
此時(shí)x0=-=-,y0=kx0+m=,所以P.(8分)
由得Q(4,4k+m).(9分)
假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,由圖形對稱性知,點(diǎn)M必在x軸上.(10分)
設(shè)M(x1,0),則·=0對滿足(*)式的m,k恒成立.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719471910822173/SYS201411171947224364549049_DA/SYS201411171947224364549049_DA.023.png">=,=(4-x1,4k+m),
由·=0,得--4x1+++3=0,
整理,得(4x1-4)+-4x1+3=0.(**)(12分)
由于(**)式對滿足(*)式的m,k恒成立,所以解得x1=1.(13分)
故存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過點(diǎn)M.(14分)
錯(cuò)因分析:本題易錯(cuò)之處是忽視定義的應(yīng)用;在處理第(2)問時(shí),不清楚圓的對稱性,從而不能判斷出點(diǎn)M必在x軸上.同時(shí)不會(huì)利用恒成立求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切.求:
(1)光線l和反射光線所在的直線方程;
(2)光線自A到切點(diǎn)所經(jīng)過的路程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,=.
(1) 求直線BD的方程;
(2) 求直線BD被過P、A、B三點(diǎn)的圓C截得的弦長;
(3) 是否存在分別以PB、PA為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
已知直線x+ay=2a+2與直線ax+y=a+1平行,則實(shí)數(shù)a的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°,,求實(shí)數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:填空題
以雙曲線-3x2+y2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:解答題
已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點(diǎn)M的直線l與曲線E交于點(diǎn)A、B,且=-2.
(1)若點(diǎn)B的坐標(biāo)為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練文數(shù)學(xué)卷(解析版) 題型:選擇題
分別是雙曲線的左右焦點(diǎn),過點(diǎn)的直線與雙曲線的左右兩支分別交于兩點(diǎn)。若是等邊三角形,則該雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com