若f(x)=-x2+2kx在區(qū)間[1,2]上為增函數(shù),g(x)=
k
x+k
在區(qū)間[1,2]上是減函數(shù),則實數(shù)k的取值范圍是
 
考點:函數(shù)單調性的判斷與證明
專題:計算題,函數(shù)的性質及應用
分析:由f(x)=-x2+2kx在區(qū)間[1,2]上都是增函數(shù)可得k≥2,進而求k的范圍.
解答: 解:∵f(x)=-x2+2kx在區(qū)間[1,2]上都是增函數(shù),
∴-
2k
-2
≥2,
∴k≥2,
則當k≥2,g(x)=
k
x+k
在區(qū)間[1,2]上顯然是減函數(shù),
則k≥2.
故答案為k≥2.
點評:本題考查了函數(shù)的單調性的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-2x+1(x<1)
x2-2x(x≥1)

(1)求值 f[f(-3)];         
(2)求使f(x)=3的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+1對任意x∈(0,1]恒有f(x)≥0成立,則實數(shù)a的取值范圍是( 。
A、[1,+∞)
B、[-
1
2
,+∞)
C、(-∞,1]
D、(-∞,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=mx2-2mx+1+n,(n≥0)在[1,2]上有最大值1和最小值0.設f(x)=
g(x)
x
.(其中e為自然對數(shù)的底數(shù))
(1)求m,n的值;
(2)若不等式f(log2x)-2klog2x≥0在x∈[2,4]上有解,求實數(shù)k的取值范圍;
(3)若方程f(|ex-1|)+
2k
|ex-1|
-3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R,x≠
1
a
)滿足ax•f(x)=2bx+f(x),a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若數(shù)列{an}滿足a1=
2
3
,an+1=f(an),bn=-5-4
an
1-an
,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式.
(Ⅲ)在(Ⅱ)的條件下,若cn=
1
bn+(-1)n
,Sn=c1+c2+c3+…+cn,求證:Sn
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex(lnx+1)
(1)求y=f(x)-f′(x)的單調區(qū)間與極值;
(2)若k<0,試分析方程f′(x)=f(x)+kx-k2+e在[1,+∞]上是否有實根,若有實數(shù)根,求出k的取值范圍;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)數(shù)列f(x)滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*),求證:數(shù)列f(x)是等差數(shù)列;
(3)若bn=
1
an-1
,Tn=b12+b22+b32+…+bn2,Sn=
10n
6n+3
,試比較Tn與Sn的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓臺的軸與母線所在直線的夾角為45°,若上底面的半徑為1,下底面半徑為4,圓臺的高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
2x+1
+a是奇函數(shù).
(1)求實數(shù)a;
(2)求函數(shù)y=f(x)的值域.

查看答案和解析>>

同步練習冊答案