分析 利用sinB,sinA,sinC成等差數(shù)列,及正弦定理,可得2a=b+c,再利用余弦定理及基本不等式可得結(jié)論.
解答 解:∵sinB,sinA,sinC成等差數(shù)列,
∴2sinA=sinB+sinC,
∴2a=b+c,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{3(^{2}+{c}^{2})-2bc}{8bc}$≥$\frac{1}{2}$(當(dāng)且僅當(dāng)b=c時(shí)取等號(hào))
∵0<A<π
∴0<A≤$\frac{π}{3}$
∴sinA∈$({0,\frac{{\sqrt{3}}}{2}}]$.
故答案為:$({0,\frac{{\sqrt{3}}}{2}}]$.
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),考查正弦定理,考查余弦定理及基本不等式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | [-1,3) | C. | [-1,+∞) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{16}$ | B. | $\frac{1}{32}$ | C. | $-\frac{1}{32}$ | D. | $\frac{1}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 5 | C. | 1或-5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-$\frac{1}{2}$)>f(a2+a+1) | B. | f(-$\frac{1}{2}$)≤f(a2+a+1) | C. | f(-$\frac{1}{2}$)≥f(a2+a+1) | D. | f(-$\frac{1}{2}$)<f(a2+a+1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com