定義在R上的函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0,則( 。
A、f(3)<f(2)<f(4)
B、f(1)<f(2)<f(3)
C、f(2)<f(1)<f(3)
D、f(3)<f(1)<f(0)
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性的等價條件,即可到底結(jié)論.
解答: 解:若對任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0,
則函數(shù)f(x)滿足在[0,+∞)上單調(diào)遞減,
則f(3)<f(1)<f(0),
故選:D.
點評:本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)單調(diào)性的等價條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點 (2,1)的直線中,被圓x2+y2-2x+4y=0截得的最長弦所在直線的方程是( 。
A、3x-y-5=0
B、3x+y-7=0
C、x+3y-5=0
D、x-3y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(α-3π)>0,sin(-α+π)<0,則α在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD,AB=4,BC=3,若將其沿對角線AC折成直二面角,則異面直線AB與CD所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-3x2+2x+1
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
2
2x+1

(1)證明f(x)是奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)求f(x)在[-1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
m
-6|<5<
m
+6,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(1,0)做直線l交已知直線x+y+5=0于點B,在線段AB上取一點P,使得
|AP|
|PB|
=
1
3
,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點坐標(biāo)分別是A(3,1,1),B(-5,2,1),C(-
8
3
,2,3),則它在yOz平面上的射影面積是
 

查看答案和解析>>

同步練習(xí)冊答案