已知等差數(shù)列{an}的前n項和為Sn,等差數(shù)列{bn}的前n項和為Tn,且
an
bn
=
14n-5
2n+2
,求
Sn
Tn
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:設(shè)an=k(14n-5),bn=k(2n+2)(k≠0),求出Sn,Tn,即可求
Sn
Tn
解答: 解:設(shè)an=k(14n-5),bn=k(2n+2)(k≠0),
∴Sn=
nk(14n+4)
2
,Tn=
nk(2n+6)
2
,
Sn
Tn
=
7n+2
n+3
點評:本題考查等差數(shù)列的通項與求和,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx-
1
2

(1)求函數(shù)f(x)的最小正周期.
(2)已知a,b,c分別為△ABC的內(nèi)角A、B、C的對邊,其中A為銳角,a=2
3
,c=4且f(A)=1,求b及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-3x-4的定義域是[-1,m],值域是[-
25
4
,0],則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
a(x+2)
x
,a∈R.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)-
x
6
零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)數(shù)列{an}前n項和Sn,4Sn=an+1(n∈N*),求a1,a2的值
(2)當(dāng){an}是等差數(shù)列,公差d,若點(an,bn)在函數(shù)f(x)=2x的圖象上,(n∈N*),a1=-2,點(a8,4b3)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+m,x∈R.
(Ⅰ)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[-
π
6
π
3
]時,f(x)min=2,求函數(shù)f(x)的最大值,并指出x取何值時,函數(shù)f(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(ax+a-x)(a>0,a≠1).
(1)證明f(x)為奇函數(shù);
(2)若f(x)的圖象經(jīng)過點(1,
5
2
),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD中,AD=BC.AD∥BC,且AB=3
2
,AD=2
3
.BD=
6
,沿BD將其折成一個二面角A-BD-C,使得AB⊥CD.
(1)求二面角A-BD-C的大;
(2)求折后點A到面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
3
)+
3

(1)f(x)在區(qū)間[-
π
4
,
π
6
]上的最大值和最小值及取得最值時x的值.
(2)若方程f(x)-t=0在x∈[-
π
4
,
π
2
]上有唯一解,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案