函數(shù)y=lg(x2-2x+a)的值域不可能是(  )
A、(-∞,0]B、[0,+∞)
C、[1,+∞)D、R
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,結(jié)合一元二次函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)進(jìn)行討論求解即可.
解答: 解:設(shè)t=x2-2x+a,
則函數(shù)為開(kāi)口向上的拋物線,
若判別式△≥0,則此時(shí)函數(shù)y=lg(x2-2x+a)的值域?yàn)镽,
若判別式△<0,則函數(shù)t=x2-2x+a>0恒成立,
此時(shí)函數(shù)有最小值,
當(dāng)t=x2-2x+a=1時(shí),y=lg(x2-2x+a)的值域?yàn)閇0,+∞),
當(dāng)t=x2-2x+a=10時(shí),y=lg(x2-2x+a)的值域?yàn)閇1,+∞),
故不可能是A.
故選:A.
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)單調(diào)性和值域的求解問(wèn)題,結(jié)合對(duì)數(shù)函數(shù)和一元二次函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x+1|+|x-a|(a∈R).
(1)當(dāng)a=2時(shí),求不等式f(x)≤4;
(2)當(dāng)a<-
1
2
時(shí),若存在x≤-
1
2
使得f(x)+x≤3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于|q|<1(q為公比)的無(wú)窮等比數(shù)列{an}(即項(xiàng)數(shù)是無(wú)窮項(xiàng)),我們定義
lim
n→∞
Sn(其中Sn是數(shù)列{an}的前n項(xiàng)的和)為它的各項(xiàng)的和,記為S,即S=
lim
n→∞
Sn=
a1
1-q
,則循環(huán)小數(shù)0.
7
2
的分?jǐn)?shù)形式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
x+y≤3
x≥1
y≥0
,則z=x-y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x+1)是偶函數(shù),當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)=sinx-x,設(shè)a=f(-
1
2
),b=f(3),c=f(0),則a、b、c的大小關(guān)系為(  )
A、b<a<c
B、c<a<b
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3sin2x+acos2x,其中a為常數(shù).f(x)的圖象關(guān)于直線x=
π
6
對(duì)稱(chēng),則f(x)在以下區(qū)間上是單調(diào)函數(shù)的是(  )
A、[-
3
5
π,-
1
6
π]
B、[-
7
12
π,-
1
3
π]
C、[-
1
6
π,
1
3
π]
D、[0,
1
2
π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)+
3
cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且滿(mǎn)足f(-x)=f(x),則函數(shù)f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:ax+y=1和直線l2:4x+ay=2,則“a+2=0”是“l(fā)1∥l2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案