11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面積S;
(2)若b=3,且a>c,求sinC的值.

分析 (1)利用正弦定理將邊化角可得,利用和角公式可得cosB,根據(jù)平面向量的數(shù)量積公式可得ac=6,帶入面積公式即可求出面積;
(2)利用余弦定理可得a2+c2=13,從而求出a,b的值,再利用正弦定理即可得出sinC.

解答 解:(1)∵3bcosB=acosC+ccosA,
∴3sinBcosB=sinAcosC+cosAsinC=sin(A+C)=sinB,
∴cosB=$\frac{1}{3}$,
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=accosB=2,∴ac=6,
∵sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{2\sqrt{2}}{3}$,
∴S=$\frac{1}{2}$absinC=2$\sqrt{2}$.
(2)由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-9}{12}$=$\frac{1}{3}$,
∴a2+c2=13,
又ac=6,a>c,
∴a=3,b=2.
由正弦定理得$\frac{c}{sinC}=\frac{sinB}$,
∴sinC=$\frac{csinB}$=$\frac{4\sqrt{2}}{9}$.

點(diǎn)評(píng) 本題考查了正弦定理,余弦定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框?yàn)榫匦,相關(guān)數(shù)據(jù)如圖2所示.

(1)設(shè)AB中點(diǎn)為O,在直線PC上找一點(diǎn)E,使得OE∥平面PAD,并說(shuō)明理由;
(2)若直線PB與底面ABCD所成角的正切值為$\frac{{2\sqrt{5}}}{5}$,求四棱錐P-ABCD的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若直線l1:x-2y+1=0與直線l2:x+ay-1=0平行,則l1與l2的距離為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,△AOB為等腰直角三角形,OA=l,OC為斜邊AB的髙,點(diǎn)P在射線OC 上,則$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值為( 。
A.-1B.-$\frac{1}{4}$C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(1)討論f(x)的極值;
(2)若$\frac{f(x)+ax}{{e}^{x}}$≤ax對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)a的取值范圍(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.曲線f(x)=2x2+x-2在P0處的切線平行于直線y=5x-1,則點(diǎn)P0坐標(biāo)為(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市統(tǒng)計(jì)局就本地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示月收入在[1000,1500)(單位:元)).
(1)估計(jì)居民月收入在[1500,2000)的頻率;
(2)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,頂點(diǎn)A1在底面ABC內(nèi)的射影恰好是AB的中點(diǎn)O,且AB=BC=2.OA1=2,
(1)求證:平面ABB1A1⊥平面BCC1B1;
(2)求直線A1C與平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)分別由下表給出:
x123
f(x)131
x123
g(x)321
若f(g(x))=3,求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案