2.若直線l1:x-2y+1=0與直線l2:x+ay-1=0平行,則l1與l2的距離為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

分析 利用直線平行可得a=-2,代入距離公式即可得出答案.

解答 解:∵直線l1與直線l2平行,
∴a=-2,
∴l(xiāng)1與l2的距離為d=$\frac{|1+1|}{\sqrt{1+4}}$=$\frac{2\sqrt{5}}{5}$.
故選B.

點(diǎn)評(píng) 本題考查了直線的平行關(guān)系,距離公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)=e2x-3,g(x)=ln(x+3),則不等式f(g(x))-g(f(x))≤11的解集為( 。
A.[-5,1]B.(-3,1]C.[-1,5]D.(-3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,△BCD與△MCD都是邊長(zhǎng)為2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2$\sqrt{3}$.
(Ⅰ)求直線AM與平面BCD所成角的大。
(Ⅱ)求三棱錐A-BMD的體積;
(Ⅲ)求平面ACM與平面BCD所成二面角的正弦值.(理科生必做,文科生選做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=cos2x的圖象上的所有點(diǎn)沿x軸( 。
A.向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{2}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐V-ABC中,平面VAB⊥平面ABC,平面VAC⊥平面ABC
(Ⅰ)求證:VA⊥平面ABC
(Ⅱ)已知AC=3,AB=2BC=2$\sqrt{3}$,三棱錐V-ABC的外接球的半徑為3,求二面角V-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,邊a,b,c分別是角A,B,C的對(duì)邊,且滿足等式bcosC=(2a+c)cos(π-B)
(Ⅰ)求角B的大小
(Ⅱ)若b=$\sqrt{13}$,且S△ABC=$\frac{3\sqrt{3}}{4}$,求a+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,Q為AB的中點(diǎn)
(Ⅰ)證明;CQ⊥平面ABE
(Ⅱ)求多面體ACED的體積
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面積S;
(2)若b=3,且a>c,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,某幾何體的三視圖中,俯視圖是邊長(zhǎng)為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( 。
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案