【題目】2016年一交警統(tǒng)計(jì)了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 | |||||
事故次數(shù) |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
【答案】(1)見解析;(2);(3)次.
【解析】分析:(1)概率表中數(shù)據(jù)畫出散點(diǎn)圖;
(2)求出由已知可得代入公式可求,
從而得到關(guān)于的線性回歸方程;
(3)將代入線性回歸方程.即可預(yù)測(cè)2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).
詳解:
(1)散點(diǎn)圖如圖所示
(2)由已知可得
所以,由最小二乘法確定的回歸方程的系數(shù)為,
因此,所求的線性回歸方程為
(3)由線性回歸方程,知當(dāng)時(shí),.
所以在年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù)為次.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.
(1)從袋中隨機(jī)取出兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率.
(2)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:x2+(y-2)2=1,Q是x軸上的動(dòng)點(diǎn),QA,QB分別切圓M于A,B兩點(diǎn)。
(1)若Q(1,0),求切線QA,QB的方程;
(2)求四邊形QAMB面積的最小值;
(3)若|AB|=,求直線MQ的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年一交警統(tǒng)計(jì)了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 | |||||
事故次數(shù) |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對(duì)任意的正數(shù)x,2x+≥1”與“對(duì)任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+≥1的”時(shí),可得“a≥”
即“對(duì)任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對(duì)任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項(xiàng)是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
先由命題解得;命題得,
(1)當(dāng),得命題,再由為真,得真且真,即可求解的取值范圍.
(2)由是的充分不必要條件,則是的充分必要條件,根據(jù)則 ,即可求解實(shí)數(shù)的取值范圍.
試題解析:
命題:由題得,又,解得;
命題: ,解得.
(1)若,命題為真時(shí), ,
當(dāng)為真,則真且真,
∴解得的取值范圍是.
(2)是的充分不必要條件,則是的充分必要條件,
設(shè), ,則 ;
∴∴實(shí)數(shù)的取值范圍是.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在中,內(nèi)角對(duì)邊的邊長分別是,已知,.
(Ⅰ)若的面積等于,求;
(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)求函數(shù)的最大值;
(2)對(duì)于任意,且,是否存在實(shí)數(shù),使恒
成立,若存在求出的范圍,若不存在,說明理由;
(3)若正項(xiàng)數(shù)列滿足,且數(shù)列的前項(xiàng)和為,試判斷與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為:,直線的方程為.
(1)求證:直線恒過定點(diǎn);
(2)當(dāng)直線被圓截得的弦長最短時(shí),求直線的方程;
(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com