【題目】如圖,△內(nèi)接于圓,是圓的直徑,四邊形為平行四邊形,平面,.

(1)求證:⊥平面;

(2)設(shè)表示三棱錐的體積,求函數(shù)的解析式及最大值.

【答案】(1)見解析;(2)解析式見解析,最大值為3√3.

【解析】分析:(1)要證(1)要證平面,需證平面,需證,用綜合法書寫即可。

(2)(1)可知平面,所以體積為,,利用均值不等式求解最大值。

詳解:(1)證明:∵四邊形DCBE為平行四邊形,∴CDBE,BCDE.

DC⊥平面ABC,BC平面ABC,∴DCBC.

AB是圓O的直徑,∴BCAC,且DCAC=C.

BC⊥平面ADC.

DEBC,∴DE⊥平面ADC;

(2)∵DC⊥平面ABC,∴BE⊥平面ABC.

RtABE中,AB=2,EB=3√.

RtABC中,∵AC=x,BC=4x2√(0<x<2).

SABC=12ACBC=12x4x2√,

V(x)=VEABC=3√6x4x2√,(0<x<2).

x2(4x2)(x2+4x22)2=4,當且僅當x2=4x2,即x=2√時,取等號,

x=2√時,體積有最大值為3√3.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐是正三角形,為其中心.面,,,的中點.

(1)證明:;

(2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè):實數(shù)滿足,其中;:實數(shù)滿足.

(1),且為真,為假,求實數(shù)的取值范圍;

(2)的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)若,設(shè)分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點,若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,直線l經(jīng)過點P(﹣1,0),其傾斜角為α,在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為ρ2﹣6ρcosθ+1=0. (Ⅰ)若直線l與曲線C有公共點,求α的取值范圍;
(Ⅱ)設(shè)M(x,y)為曲線C上任意一點,求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓恒過點,且與直線 相切.

(1)求動圓圓心的軌跡的方程;

(2)探究在曲線上,是否存在異于原點的兩點, ,當時,直線恒過定點?若存在,求出該定點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2a2,a4的等差中項.

(1)求數(shù)列{an}的通項公式;

(2)bn=,Sn=b1+b2+…+bn,對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.

查看答案和解析>>

同步練習冊答案