分析 (1)由橢圓的離心率公式和準線方程,結合四邊形的面積,橢圓的a,b,c的關系,計算即可得到;
(2)分別求出直線PB,TC的方程,代入橢圓方程,求得交點P,Q的橫坐標,再由三角形的面積公式,結合二次函數(shù),計算即可得到最大值.
解答 解:(1)由題意得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
$\frac{1}{2}$•2a•2b=4,即有ab=2,
a2-b2=c2,
解得a=2,c=$\sqrt{3}$,b=1,
則橢圓方程為$\frac{{x}^{2}}{4}$+y2=1;
(2)由A(0,1),B(0,-1),T(t,2),
則直線TA:y=$\frac{1}{t}$x+1,代入橢圓方程可得,(1+$\frac{4}{{t}^{2}}$)x2+$\frac{8}{t}$x=0,
解得xP=-$\frac{8t}{4+{t}^{2}}$,
直線TB:y=$\frac{3}{t}$x-1,代入橢圓方程可得xQ=$\frac{24t}{36+{t}^{2}}$,
λ=$\frac{{S}_{△TAB}}{{S}_{△TPQ}}$=$\frac{\frac{1}{2}TA•TB•sin∠ATB}{\frac{1}{2}TP•TQ•sin∠PTQ}$=$\frac{TA•TB}{TP•TQ}$=$\frac{{x}_{T}-{x}_{A}}{{x}_{T}-{x}_{P}}$•$\frac{{x}_{T}-{x}_{B}}{{x}_{T}-xQ}$
=$\frac{t}{t+\frac{8t}{4+{t}^{2}}}$•$\frac{t}{t-\frac{24t}{36+{t}^{2}}}$=$\frac{({t}^{2}+4)({t}^{2}+36)}{({t}^{2}+12)({t}^{2}+12)}$,
令t2+12=m>12,則λ=$\frac{(m-8)(m+24)}{{m}^{2}}$=1+$\frac{16}{m}$-$\frac{192}{{m}^{2}}$=-192($\frac{1}{m}$-$\frac{1}{24}$)2+$\frac{4}{3}$≤$\frac{4}{3}$,
當且僅當m=24,即t=±2$\sqrt{3}$時,取得“=”,
所以λ的最大值為$\frac{4}{3}$.
點評 本題考查橢圓的方程和性質,主要考查橢圓的離心率和方程的運用,聯(lián)立直線方程和橢圓方程,求得交點,同時考查三角形的面積公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $-\frac{1}{9}$ | C. | $\frac{5}{9}$ | D. | $-\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\int_{\;\;0}^{\;\;1}$xdx | B. | $\int_{\;\;0}^{\;\;1}{{e^x}$dx | C. | $\int_{\;\;0}^{\;\;\frac{π}{2}}$1dx | D. | $\int_{\;\;0}^{\;\;\frac{π}{2}}$cosxdx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,-7) | B. | ($\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{1}{2}$) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{f({m}^{n})}{{m}^{n}}$ | B. | logmn•f(lognm) | C. | $\frac{f({n}^{m})}{{n}^{m}}$ | D. | lognm•f(logmn) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com