函數(shù)y=log2x+2x-9的一個(gè)零點(diǎn)在區(qū)間(k,k+1)(k∈Z)上,則k=
3
3
分析:要判斷函數(shù)f(x)=log2x+2x-9的零點(diǎn)位置,我們可以根據(jù)零點(diǎn)存在定理,依次判斷區(qū)間的兩個(gè)端點(diǎn)對(duì)應(yīng)的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間(a,b)上有零點(diǎn),則f(a)與f(b)異號(hào)進(jìn)行判斷.
解答:解:因函數(shù)y=log2x+2x-9在(0,+∞)上單調(diào)遞增且連續(xù)
而f(3)=log23+2×3-9<0,f(4)=log24+2×4-9=1>0
則f(3)f(4)<0
故函數(shù)y=log2x+2x-9的一個(gè)零點(diǎn)在區(qū)間(3,4)
∴k=3
故答案為:3
點(diǎn)評(píng):本題主要考查了函數(shù)的零點(diǎn),解答的關(guān)鍵是零點(diǎn)存在定理:即連續(xù)函數(shù)在區(qū)間(a,b)上零點(diǎn),則f(a)與f(b)異號(hào),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2
x-1
x
(x>1)的反函數(shù)是( 。
A、y=
1
1-2x
(x>0)
B、y=
1
1-2x
(x<0)
C、y=
1
1+2x
(x>0)
D、y=
1
1+2x
(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x=2及x=4與函數(shù)y=log2x圖象的交點(diǎn)分別為A,B,與函數(shù)y=lgx圖象的交點(diǎn)分別為C,D,則直線AB與CD( 。
A、相交,且交點(diǎn)在第I象限B、相交,且交點(diǎn)在第II象限C、相交,且交點(diǎn)在第IV象限D、相交,且交點(diǎn)在坐標(biāo)原點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2x,x∈(0,8],其值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2x+logx2+1的值域是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)為了得到函數(shù)y=
1
2
log2(x-1)
的圖象,可將函數(shù)y=log2x的圖象上所有的點(diǎn)的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案