【題目】已知四數a1 , a2 , a3 , a4依次成等比數列,且公比q不為1.將此數列刪去一個數后得到的數列(按原來的順序)是等差數列,則正數q的取值集合是 .
【答案】{ , }
【解析】解:因為公比q不為1,所以不能刪去a1,a4.設{an}的公差為d,則①若刪去a2,則由2a3=a1+a4得2a1q2=a1+a1q3,即2q2=1+q3,
整理得q2(q﹣1)=(q﹣1)(q+1).
又q≠1,則可得 q2=q+1,又q>0解得q= ;②若刪去a3,則由2a2=a1+a4得2a1q=a1+a1q3,即2q=1+q3,整理得q(q﹣1)(q+1)=q﹣1.
又q≠1,則可得q(q+1)=1,又q>0解得 q= .
綜上所述,q= .
所以答案是:{ , }.
【考點精析】本題主要考查了等差數列的性質的相關知識點,需要掌握在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)當a=﹣1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關于x的不等式2f(x)+1<|1﹣b|的解集為空集,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的右焦點 ,且經過點 ,點M是x軸上的一點,過點M的直線l與橢圓C交于A,B兩點(點A在x軸的上方)
(1)求橢圓C的方程;
(2)若|AM|=2|MB|,且直線l與圓 相切于點N,求|MN|的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣一中計劃把一塊邊長為20米的等邊三角形ABC的邊角地辟為植物新品種實驗基地,圖中DE需把基地分成面積相等的兩部分,D在AB上,E在AC上.
(1)設AD=x(x≥10),ED=y,試用x表示y的函數關系式;
(2)如果DE是灌溉輸水管道的位置,為了節(jié)約,則希望它最短,DE的位置應該在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應該在哪里?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位280名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數分別是多少?
(II)為了交流讀書心得,現(xiàn)從上述12人中再隨機抽取3人發(fā)言,設3人中年齡在[35,40)的人數為ξ,求ξ的數學期望;
(III)為了估計該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學類書籍”進行調查,調查結果如下表所示:(單位:人)
喜歡閱讀國學類 | 不喜歡閱讀國學類 | 合計 | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合計 | 22 | 18 | 40 |
根據表中數據,我們能否有99%的把握認為該單位員工是否喜歡閱讀國學類書籍和性別有關系?
附: ,其中n=a+b+c+d
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+ x2﹣(1+a)x.
(1)求函數f(x)的單調區(qū)間;
(2)若f(x)≥0對定義域中的任意x恒成立,求實數a的取值范圍;
(3)證明:對任意正整數m,n,不等式 + +…+ > 恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1 , 則雙曲線的離心率為( )
A.
B.
C.2
D.2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com