【題目】已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;

(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.

【答案】(1)曲線表示以為圓心,2為半徑的圓.

(2)

【解析】

1)利用平方和為1消去參數(shù)得到曲線C的直角坐標(biāo)方程,再利用,整理即可得到答案;(2)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程,求出圓心到直線的距離,加上半徑即可得到最大距離.

(1)由,得,

兩式兩邊平方并相加,得,

所以曲線表示以為圓心,2為半徑的圓.

代入得,化簡(jiǎn)得

所以曲線的極坐標(biāo)方程為

(2)由,得,即,得

所以直線的直角坐標(biāo)方程為

因?yàn)閳A心到直線 的距離,

所以曲線上的點(diǎn)到直線的最大距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(2,

(1)求橢圓C的直角坐標(biāo)方程和點(diǎn)A在直角坐標(biāo)系下的坐標(biāo)

(2)直線l與橢圓C交于P,Q兩點(diǎn),求△APQ的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某歌舞團(tuán)有名演員,他們編排了一些節(jié)目,每個(gè)節(jié)目都由四名演員同臺(tái)表演.在一次演出中,他們發(fā)現(xiàn):能適當(dāng)安排若干個(gè)節(jié)目,使團(tuán)中每?jī)擅輪T都恰有一次在這次演出中同臺(tái)表演。求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)為曲線上任意一點(diǎn)且滿足.

(1)求曲線的方程;

(2)設(shè)曲線軸交于、兩點(diǎn),點(diǎn)是曲線上異于、的任意一點(diǎn),直線、分別交直線于點(diǎn)、.試問在軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交橢圓兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于20191018日至27日在中國武漢舉行,中國隊(duì)以1336442銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次動(dòng)物保護(hù)知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動(dòng)物保護(hù)關(guān)注者”,則山圖中表格可得列聯(lián)表如下:

非“動(dòng)物保護(hù)關(guān)注者”

是“動(dòng)物保護(hù)關(guān)注者”

合計(jì)

10

45

55

15

30

45

合計(jì)

25

75

100

1)請(qǐng)判斷能否在犯錯(cuò)誤的概率不超過005的前提下認(rèn)為“動(dòng)物保護(hù)關(guān)注者”與性別有關(guān)?

2)若問卷得分不低于80分的人稱為“動(dòng)物保護(hù)達(dá)人”.現(xiàn)在從本次調(diào)查的“動(dòng)物保護(hù)達(dá)人”中利用分層抽樣的方法隨機(jī)抽取6名市民參與環(huán)保知識(shí)問答,再從這6名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“動(dòng)物保護(hù)達(dá)人”又有女動(dòng)物保護(hù)達(dá)人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐中,是邊長(zhǎng)為2的等邊三角形,,Q為四邊形的外接圓的圓心,平面,M在棱上,且.

1)證明:平面.

2)若與平面所成角為60°,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的側(cè)面是正三角形,底面是直角梯形,.

1)求證:

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案