已知二次函數(shù).
(1)若,試判斷函數(shù)零點個數(shù);
(2)是否存在,使同時滿足以下條件
①對任意,且;
②對任意,都有。若存在,求出的值,若不存在,請說明理由。
(3)若對任意且,,試證明存在,
使成立。
(1)函數(shù)有兩個零點。(2)當(dāng)時,同時滿足條件①、②. (3)利用零點存在性定理證明即可
解析試題分析:(1)
當(dāng)時,
函數(shù)有一個零點; 3分
當(dāng)時,,函數(shù)有兩個零點。 5分
(2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,
∴即 7分
由②知對,都有
令得又因為恒成立,
,即,即
由得, 10分
當(dāng)時,,
其頂點為(-1,0)滿足條件①,又對,
都有,滿足條件②.
∴存在,使同時滿足條件①、②. .12分
(3)令,則
,
在內(nèi)必有一個實根。即,
使成立 18分
考點:本題考查了函數(shù)的零點及恒成立問題
點評:①二次函數(shù)、一元二次方程和一元二次不等式是一個有機的整體,也是高考熱點,要深刻理解它們相互之間的關(guān)系,能用函數(shù)思想來研究方程和不等式,便是抓住了關(guān)鍵.②二次函數(shù)的圖像形狀、對稱軸、頂點坐標(biāo)、開口方向等是處理二次函數(shù)問題的重要依據(jù).
科目:高中數(shù)學(xué) 來源: 題型:解答題
作為紹興市2013年5.1勞動節(jié)系列活動之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個矩形設(shè)計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長為米(如圖所示)
(1)試將表示為的函數(shù);
(2)問應(yīng)該如何設(shè)計矩形地塊的邊長,使花圃占地面積取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
森林失火了,火正以的速度順風(fēng)蔓延,消防站接到報警后立即派消防員前去,在失火后到達現(xiàn)場開始救火,已知消防隊在現(xiàn)場每人每分鐘平均可滅火,所消耗的滅火材料、勞務(wù)津貼等費用每人每分鐘元,另附加每次救火所損耗的車輛、器械和裝備等費用平均每人元,而每燒毀森林的損失費為元,設(shè)消防隊派了名消防員前去救火,從到達現(xiàn)場開始救火到火全部撲滅共耗時.
(1)求出與的關(guān)系式;
(2)問為何值時,才能使總損失最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關(guān)系式,每日的銷售額(單位:萬元)與日產(chǎn)量的函數(shù)關(guān)系式
已知每日的利潤,且當(dāng)時,.
(1)求的值;
(2)當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.
(1)分別寫出用表示和用表示的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計能使S取得最大值,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時,方能使修建成本最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com