無窮等差數(shù)列{an}各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)和,若a1+a3+a8=a42,則a5·S4的最大值是______________.

 

【答案】

36

【解析】

試題分析:因?yàn)闊o窮等差數(shù)列{an}各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)和,若a1+a3+a8=a42,

根據(jù)通項(xiàng)公式的性質(zhì)可知

因?yàn)閐>0,結(jié)合二次函數(shù)的性質(zhì)可知最大值為36,故答案為36.

考點(diǎn):等差數(shù)列

點(diǎn)評:解決該試題的關(guān)鍵是能利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和來求解運(yùn)算,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若無窮等差數(shù)列{an}中,a1=1,公差為d,前n項(xiàng)和為Sn,其中
S2n
Sn
=c
(c為常數(shù))
(1)求d的值;
(2)若d>0,數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=
2an
,若對于任意的正整數(shù)n總有
TnTn+2
Tn+12
≥m
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,則下列命題錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=
x2-8x+20
+
x2+1
的最小值為5;
②若直線y=kx+1與曲線y=|x|有兩個(gè)交點(diǎn),則k的取值范圍是-1≤k≤1;
③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2
2
,則m的傾斜角可以是15°或75°
④設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,若對任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
⑤設(shè)△ABC的內(nèi)角A.B.C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個(gè)正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
其中所有正確命題的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn,求所有的無窮等差數(shù)列{an},使得對于一切正整數(shù)k都有Sk3=(Sk)3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,則“d<0”是“數(shù)列{Sn}有最大項(xiàng)”的( 。

查看答案和解析>>

同步練習(xí)冊答案