【題目】已知.
(Ⅰ)當(dāng)時(shí),判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時(shí),若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)既不是奇函數(shù),也不是偶函數(shù);(Ⅱ)或;(Ⅲ)當(dāng)時(shí),的取值范圍是;當(dāng)時(shí),的取值范圍是;當(dāng)時(shí),的取值范圍是.
【解析】
試題(Ⅰ)對函數(shù)奇偶性的判斷,一定要結(jié)合函數(shù)特征先作大致判斷,然后再根據(jù)奇函數(shù)偶函數(shù)的定義作嚴(yán)格的證明.當(dāng)時(shí),,從解析式可以看出它既不是奇函數(shù),也不是偶函數(shù).對既不是奇函數(shù),也不是偶函數(shù)的函數(shù),一般取兩個特殊值說明.
(Ⅱ)當(dāng)時(shí),, 由得,這是一個含有絕對值符號的不等式,對這種不等式,一般先分情況去絕對值符號.這又是一個含有指數(shù)式的不等式,對這種不等式,一般將指數(shù)式看作一個整體,先求出指數(shù)式的值,然后再利用指數(shù)式求出的值.
(Ⅲ)不等式恒成立的問題,一般有以下兩種考慮,一是分離參數(shù),二是直接求最值.在本題中,分離參數(shù)比較容易.分離參數(shù)時(shí)需要除以,故首先考慮的情況. 易得時(shí),取任意實(shí)數(shù),不等式恒成立.
,此時(shí)原不等式變?yōu)?/span>;即,這時(shí)應(yīng)滿足:,所以接下來就求的最大值和的最小值.在求這個最大值和最小值時(shí),因數(shù)還有一個參數(shù),所以又需要對進(jìn)行討論.
試題解析:(Ⅰ)當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù)
∵,∴
所以既不是奇函數(shù),也不是偶函數(shù) 3分
(Ⅱ)當(dāng)時(shí),, 由得
即或
解得
所以或8分
(Ⅲ)當(dāng)時(shí),取任意實(shí)數(shù),不等式恒成立,
故只需考慮,此時(shí)原不等式變?yōu)?/span>;即
故
又函數(shù)在上單調(diào)遞增,所以;
對于函數(shù)
①當(dāng)時(shí),在上單調(diào)遞減,,又,
所以,此時(shí)的取值范圍是
②當(dāng),在上,,
當(dāng)時(shí),,此時(shí)要使存在,
必須有即,此時(shí)的取值范圍是
綜上,當(dāng)時(shí),的取值范圍是;
當(dāng)時(shí),的取值范圍是;
當(dāng)時(shí),的取值范圍是13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線 的左右焦點(diǎn)分別為,過的直線分別交雙曲線左右兩支于點(diǎn)M,N.若以MN為直徑的圓經(jīng)過點(diǎn)且,則雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若Q是曲線C上的動點(diǎn),M為線段PQ的中點(diǎn),直線l上有兩點(diǎn)A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,經(jīng)過軸正半軸上點(diǎn)的直線交于不同的兩點(diǎn)和.
(1)若,求點(diǎn)的坐標(biāo);
(2)若,求證:原點(diǎn)總在以線段為直徑的圓的內(nèi)部;
(3)若,且直線∥,與有且只有一個公共點(diǎn),問:△的面積是否存在最小值?若存在,求出最小值,并求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次高三年級模擬考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計(jì)劃從900名考生的選做題成績中隨機(jī)抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機(jī)順序依次編號為001~900.
(1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機(jī)抽樣確定的成績編號為025,求樣本中所有成績編號之和;
(2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數(shù)為5,方差為2,B題目的成績平均數(shù)為5.5,方差為0.25.
(i)用樣本估計(jì)該校這900名考生選做題得分的平均數(shù)與方差;
(ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績的中位數(shù)和B題目成績的中位數(shù)都是5.5.從樣本中隨機(jī)選取兩個大于樣本平均值的數(shù)據(jù)做進(jìn)一步調(diào)查,求取到的兩個成績來自不同題目的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大。
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,,的前n項(xiàng)和為.
(1)若,,求證:,其中,;
(2)若對任意均有,求的通項(xiàng)公式;
(3)若對任意均有,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“滿意”的觀眾的概率為0.15.
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少;
(2)在(1)的條件下,從抽取到“滿意”的人中隨機(jī)抽取2人,設(shè)“抽到的觀眾來自不同的地區(qū)”為事件,求事件的概率;
(3)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.
附:參考公式:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com