【題目】設(shè)函數(shù),.
(1)若曲線在點處的切線與軸平行,求;
(2)當(dāng)時,函數(shù)的圖象恒在軸上方,求的最大值.
【答案】(Ⅰ)a=e;(Ⅱ)a的最大值為2e;
【解析】
(Ⅰ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)條件列方程解得a;(Ⅱ)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點與1大小分類討論,根據(jù)函數(shù)單調(diào)性確定函數(shù)最小值,最后根據(jù)最小值大于零,解得a的取值范圍,即得最大值.
(Ⅰ)∵,∴f'(x)=exa,∴f'(1)=ea,
由題設(shè)知f'(1)=0,即ea=0,解得a=e.
經(jīng)驗證a=e滿足題意.
(Ⅱ)令f'(x)=0,即ex=a,則x=lna,
(1)當(dāng)lna<1時,即0<a<e
對于任意x∈(-∞,lna)有f'(x)<0,故f(x)在(-∞,lna)單調(diào)遞減;
對于任意x∈(lna,1)有f'(x)>0,故f(x)在(lna,1)單調(diào)遞增,
因此當(dāng)x=lna時,f(x)有最小值為成立.所以0<a<e,
(2)當(dāng)lna≥1時,即a≥e對于任意x∈(-∞,1)有f'(x)<0,
故f(x)在(-∞,1)單調(diào)遞減,所以f(x)>f(1).
因為f(x)的圖象恒在x軸上方,所以f(1)≥0,即a≤2e,
綜上,a的取值范圍為(0,2e],所以a的最大值為2e.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組表示的區(qū)域為A,不等式組表示的區(qū)域為B.
(1)在區(qū)域A中任取一點(x,y),求點(x,y)∈B的概率;
(2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)在區(qū)域B中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,過點的直線分別與直線,交于,其中點在第三象限,點在第二象限,點;
(1)若的面積為,求直線的方程;
(2)直線交于點,直線交于點,若直線的斜率均存在,分別設(shè)為,判斷是否為定值?若為定值,求出該定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,過點的直線與線段分別相交于點,若.
(1)求關(guān)于的函數(shù)解析式;
(2)定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以1為首項,為公比的等比數(shù)列,為原點,令,是否存在點,使得?若存在,求出點的坐標(biāo),若不存在,說明理由.
(3)設(shè)函數(shù)為上的偶函數(shù),當(dāng)時,函數(shù)的圖像關(guān)于直線對稱,當(dāng)方程在上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,分別是面,面,面的中心,,.
(1)求證:平面平面;
(2)求三棱錐的體積;
(3)在棱上是否存在點,使得平面平面?如果存在,請求出的長度;如果不存在,求說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點。
(1)求證:;
(2)求平面與平面所成銳二面角的大;
(3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零數(shù)列的遞推公式為,.
(1)求證數(shù)列是等比數(shù)列;
(2)若關(guān)于的不等式有解,求整數(shù)的最小值;
(3)在數(shù)列中,是否一定存在首項、第項、第項,使得這三項依次成等差數(shù)列?若存在,請指出所滿足的條件;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達(dá)點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com