14.判斷點(diǎn)P(-2,3)、Q(4,2)是否為直線y=$\frac{1}{2}$x上的點(diǎn).

分析 分別當(dāng)點(diǎn)的橫坐標(biāo)代入直線方程,進(jìn)行驗(yàn)證即可.

解答 解:當(dāng)x=-2時,y=$\frac{1}{2}$×(-2)=-1,則點(diǎn)P(-2,3)不是直線y=$\frac{1}{2}$x上的點(diǎn),
當(dāng)x=4時,y=$\frac{1}{2}$×4=2,則點(diǎn)Q(4,2)是直線y=$\frac{1}{2}$x上的點(diǎn).

點(diǎn)評 本題主要考查點(diǎn)與直線的位置關(guān)系,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=-4x的焦點(diǎn)坐標(biāo)是( 。
A.(-2,0)B.(-1,0)C.(0,-1)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,角A,B,C所對的邊分別為a、b、c,且滿足cos2B+$\frac{1}{2}$sin2B=1,0<B<$\frac{π}{2}$,若|$\overrightarrow{BC}+\overrightarrow{AB}$|=3,則$\frac{16b}{ac}$的最小值為$\frac{32-16\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)i為虛數(shù)單位且z的共軛復(fù)數(shù)是$\overline{z}$,若z+$\overline{z}$=4,z$•\overline{z}$=8,則z的虛部為( 。
A.±2B.±2iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.經(jīng)過點(diǎn)A(2,m)、B(1,-1)的直線的斜率等于$\sqrt{3}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z滿足z=cosα+isinα,復(fù)數(shù)ω=$\frac{z+\overline{z}}{1+z^2}$,則|ω|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC中,角A,B,C所對的邊分別為a,b,c,a=2且c(cosA+cosB)=-(a+b)cos(A+B).
(1)求角C的大;
(2)若$\frac{1}{2}$≤cosA$≤\frac{\sqrt{2}}{2}$,求b邊的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a為實(shí)數(shù),并且$\frac{2+i}{3-ai}$+$\frac{1}{4}$的實(shí)部與虛部相等,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某三棱錐的三視圖,則該三棱錐的體積為(  )
A.$\frac{16}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{32}{3}$D.$\frac{64}{3}$

查看答案和解析>>

同步練習(xí)冊答案