(本小題滿分12分)

在平面直角坐標(biāo)系中,點到兩定點F1和F2的距離之和為,設(shè)點的軌跡是曲線.(1)求曲線的方程;   (2)若直線與曲線相交于不同兩點、(、不是曲線和坐標(biāo)軸的交點),以為直徑的圓過點,試判斷直線是否經(jīng)過一定點,若是,求出定點坐標(biāo);若不是,說明理由.

 

【答案】

(1)   ;(2)直線過定點,定點坐標(biāo)為

【解析】

試題分析:(1)設(shè),由橢圓定義可知,

的軌跡是以為焦點,長半軸長為2的橢圓.

它的短半軸長,故曲線的方程為: 

(2)設(shè)

聯(lián)立  消去y,整理得

則 

因為以為直徑的圓過點,,即

解得:,且均滿足

當(dāng)時,的方程,直線過點,與已知矛盾;

當(dāng)時,的方程為,直線過定點

所以,直線過定點,定點坐標(biāo)為

考點:本題主要考查橢圓的定義及標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。

點評:典型題,關(guān)于橢圓的考查,往往以這種“連環(huán)題”的形式出現(xiàn),首先求標(biāo)準(zhǔn)方程,往往不難。而涉及在直線與橢圓的位置關(guān)系,往往要利用韋達定理,實現(xiàn)“整體代換”。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案