楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖所示是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
23
,求n的值;
(3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m,k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
分析:(1)根據(jù)數(shù)陣中數(shù)的排列規(guī)律,可得第n行的從左到右第m+1個(gè)數(shù)為Cnm,由此即可算出第20行中從左到右的第4個(gè)數(shù)的大;
(2)由(1)的結(jié)論,建立關(guān)于n的方程并化簡整理,解之可得n=34;
(3)根據(jù)題意,所求結(jié)論可表示為Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m).再由組合數(shù)的性質(zhì):Cmm+Cmm-1=Cm+1m,代入等式的左邊進(jìn)行化簡整理,即可得到該等式成立.
解答:解:(1)由題意,得第n行的從左到右第m+1個(gè)數(shù)為Cnm,(n∈N,m∈N且m≤n)
∴第20行中從左到右的第4個(gè)數(shù)為C203=
20×19×18
3×2×1
=1140;
(2)由題意,得
∵第n行中從左到右第14與第15個(gè)數(shù)的比為
2
3
,
Cn13
Cn14
=
2
3
,可得
n!
13!•(n-13)!
n!
14!(n-14)!
=
2
3

化簡得
14
n-13
=
2
3
,解之得n=34;
(3)結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).
用公式表示為:Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)
證明:左式=Cm-1m-1+Cmm-1+…+Cm+k-2m-1
=Cmm+Cmm-1+…+Cm+k-2m-1=Cm+1m+Cm+1m-1+…+Cm+k-2m-1
=…=Cm+k-2m+Cm+k-2m-1=Cm+k-1m=右式
即等式Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)成立.
點(diǎn)評(píng):本題給出三角形數(shù)陣,求它的指定項(xiàng)和在m斜列中包含的等式.著重考查了組合數(shù)的性質(zhì)、運(yùn)用組合數(shù)解決實(shí)際應(yīng)用問題、方程與恒等式的處理與證明等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,他的數(shù)學(xué)研究與教育工作的重點(diǎn)是在計(jì)算技術(shù)方面,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān).圖是一個(gè)7階的楊輝三角.
給出下列五個(gè)命題:
①記第i(i∈N*)行中從左到右的第j(j∈N*)個(gè)數(shù)為aij,則數(shù)列{aij}的通項(xiàng)公式為Cij;
②第k行各數(shù)的和是2k;
③n階楊輝三角中共有
(n+1)22
個(gè)數(shù);
④n階楊輝三角的所有數(shù)的和是2n+1-1.
其中正確命題的序號(hào)為
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省泰州中學(xué)高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題

(本題滿分15分)楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第3個(gè)數(shù);
(2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;
(3)寫出第行所有數(shù)的和,寫出階(包括階)楊輝三角中的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).
試用含有的數(shù)學(xué)式子表示上述結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高二第二學(xué)期期末考試數(shù)學(xué)(理)試題 題型:解答題

(本題滿分15分)楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

  

(1)求第20行中從左到右的第3個(gè)數(shù);

(2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;

(3)寫出第行所有數(shù)的和,寫出階(包括階)楊輝三角中的所有數(shù)的和;

(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).

試用含有的數(shù)學(xué)式子表示上述結(jié)論,并證明.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案