16.下面有四個命題:
(1)若-a不屬于N,則a屬于N;
(2)若a∈N,b∈N,則a+b的最小值為0;
(3)x2+1=2x的解可表示為{1,1};
其中正確命題的個數(shù)為( 。
A.0個B.1個C.2個D.3個

分析 (1)舉反例a=0.5,不成立,
(2)根據(jù)自然數(shù)的性質(zhì)進行判斷,
(3)根據(jù)方程根的表示以及集合元素的互異性進行判斷.

解答 解:(1)若-a不屬于N,則a屬于N;錯誤,比如-0.5不屬于N,但0.5也不屬于N,故(1)錯誤,
(2)若a∈N,則a≥0,若b∈N,則b≥0,則a+b≥0,當且僅當a=b=0時取等號,則a+b的最小值為0;正確,
(3)由x2+1=2x得x=1,則方程的解可表示為{1};故(3)錯誤,
故選:B

點評 本題主要考查命題的真假判斷,涉及集合元素的表示以及元素和集合的關(guān)系,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知隨機變量ζ服從正態(tài)分布N(2,4),且P(ζ<4)=0.8,則P(0<ζ<2)=(  )
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.由a,a2組成的集合中含有兩個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在“市長峰會”期間,某高校有14名志愿者參加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當天不同的接待排班種數(shù)為C144C104C64(用式子表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當x∈(0,2)時,f(x)=2x2,則f(2 011)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.P={x|x2-2x-3=0},S={x|ax+2=0},S⊆P,求a取值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知不等式x2-2x-3<0的整數(shù)解構(gòu)成等差數(shù)列{an}的前三項,則數(shù)列的第四項為( 。
A.3B.-1C.2D.3或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知平面向量$\overrightarrow{O{P}_{1}}$、$\overrightarrow{O{P}_{2}}$、$\overrightarrow{O{P}_{3}}$滿足條件$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1.
(1)求證:△P1P2P3是正三角形;
(2)試判斷直線OP1與直線P2P3的位置關(guān)系,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=3x-2,x∈R.規(guī)定:給定一個實數(shù)x0,賦值x1=f(x0),若x1≤244,則繼續(xù)賦值x2=f(x1),…,以此類推,若xn-1≤244,則xn=f(xn-1),否則停止賦值,如果得到xn稱為賦值了n次(n∈N*).已知賦值8次后該過程停止,則x0的取值范圍是$\frac{28}{27}<{x_0}≤\frac{10}{9}$.

查看答案和解析>>

同步練習冊答案