18.設(shè)點(diǎn)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),且|PF1|-|PF2|=2,點(diǎn)P到雙曲線的兩條漸近線的距離之積為$\frac{4}{5}$,則雙曲線的離心率為$\frac{\sqrt{5}}{2}$.

分析 雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線的方程為bx±ay=0,設(shè)P(x,y),利用點(diǎn)P到雙曲線的兩條漸近線的距離之積為$\frac{^{2}{x}^{2}-{a}^{2}{y}^{2}}{^{2}+{a}^{2}}$=$\frac{4}{5}$,求出c,利用雙曲線的定義,求出a,即可求出雙曲線的離心率.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線的方程為bx±ay=0,
設(shè)P(x,y),則點(diǎn)P到雙曲線的兩條漸近線的距離之積為$\frac{^{2}{x}^{2}-{a}^{2}{y}^{2}}{^{2}+{a}^{2}}$=$\frac{4}{5}$,
∴c=$\frac{\sqrt{5}}{2}$,
∵|PF1|-|PF2|=2,
∴a=1,
∴雙曲線的離心率為e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故答案為:$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率,考查雙曲線的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知全集為R,集合A={x|($\frac{1}{2}$)x≤1},B={x|x2-6x+8≤0},則A∩(∁RB)[0,2)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解不等式:ax2+2x+2-a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x{\;}^{2},(x≤0)}\\{\sqrt{2-x{\;}^{2}},(x>0)}\end{array}\right.$則${∫}_{-1}^{\sqrt{2}}$f(x)dx=(  )
A.$\frac{π}{2}$-$\frac{1}{3}$B.$\frac{π}{2}$+$\frac{1}{3}$C.$\frac{π}{4}$+$\frac{1}{3}$D.$\frac{π}{4}$-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知x1,x2是函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}b{x}^{2}$+cx+d的兩個(gè)極值點(diǎn),且滿足1<x1<x2<2,a,b,c∈Z,則當(dāng)正整數(shù)a取得最小值時(shí),b-c=( 。
A.-5B.-4C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=2x2+5x+1,求f(0),f(-a),f($\frac{1}{a}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.判斷三角形形狀:c=2acosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)f(x)=a1x+a2x2+…+anxn(n為正整數(shù)),若f(1)=n2,則( 。
A.an=2n-1,f($\frac{1}{3}$)的最小值為1B.an=n,f($\frac{1}{3}$)的最小值為$\frac{1}{3}$
C.an=2n-1,f($\frac{1}{3}$)的最小值為$\frac{1}{3}$D.an=n,f($\frac{1}{3}$)的最小值為$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)(x∈R)是以2為最小正周期的周期函數(shù),且x∈[0,2]時(shí),f(x)=$\left\{\begin{array}{l}{cosπx,x<1}\\{f(x-1)-1,x>1}\end{array}\right.$,則f($\frac{7}{2}$)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案