9.(1)若x,y滿足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求證:|x|<$\frac{3}{10}$;
(2)求證:x4+16y4≥2x3y+8xy3

分析 (1)利用絕對值不等式的性質(zhì)即可證明;
(2)作差比較即可.

解答 證明:(1)利用絕對值不等式的性質(zhì)得:
|x|=$\frac{1}{5}$[|2(x-3y)+3(x+2y)|]≤$\frac{1}{5}$[|2(x-3y)|+|3(x+2y)|]<$\frac{1}{5}$(2×$\frac{1}{2}$+3×$\frac{1}{6}$)=$\frac{3}{10}$;
(2)因?yàn)閤4+16y4-(2x3y+8xy3)=x4-2x3y+16y4-8xy3=x3(x-2y)+8y3(2y-x)
=(x-2y)(x3-8y3)=(x-2y)(x-2y)(x2+2xy+4y2
=(x-2y)2[(x+y)2+3y2]≥0,
所以x4+16y4≥2x3y+8xy3

點(diǎn)評 本題考查了絕對值不等式的性質(zhì),作差法證明不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知隨機(jī)變量η滿足E(1-η)=5,D(1-η)=5,則下列說法正確的是(  )
A.E(η)=-5,D(η)=5B.E(η)=-4,D(η)=-4C.E(η)=-5,D(η)=-5D.E(η)=-4,D(η)=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率為$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),一條直線l與橢圓交于M、N兩點(diǎn),直線OM、ON的斜率之積為-$\frac{1}{4}$,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是a≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級別第一階梯水量 第二階梯水量 第三階梯水量 
 月用水量范圍(單位:立方米)(0,10](10,15] (15,+∞)
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一個(gè)月的用水量,得到如圖所示的莖葉圖.
(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,兩條漸近線分別為l1,l2,過F1作F1A⊥l1于點(diǎn)A,過F2作F2B⊥l2于點(diǎn)B,O為原點(diǎn),若△ABO是邊長為$\sqrt{3}$的等邊三角形,則雙曲線的方程為( 。
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x3-3x2-m,g(x)=3ex-6(1-m)x-3(m∈R,e為自然對數(shù)底數(shù)).
(1)試討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng)m>0,且x>0時(shí),總有g(shù)(x)>f'(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列關(guān)系中,是相關(guān)關(guān)系的有多少個(gè)( 。
①利息與利率                                ②學(xué)生的身高與學(xué)生的學(xué)習(xí)成績之間的關(guān)系
③居民收入與儲(chǔ)蓄存款                  ④學(xué)生的學(xué)習(xí)態(tài)度與學(xué)習(xí)成績之間的關(guān)系.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0、2、4、8、12、18、24、32、40、50…,則此數(shù)列第20項(xiàng)為( 。
A.180B.200C.128D.162

查看答案和解析>>

同步練習(xí)冊答案