15.已知{an}為等差數(shù)列,Sn為數(shù)列{an}的前n項和,平面內(nèi)三個不共線向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,滿足$\overrightarrow{OC}$=(a17-2)$\overrightarrow{OA}$+a2000$\overrightarrow{OB}$,若點A,B,C在一條直線上,則S2016=( 。
A.3024B.2016C.1008D.504

分析 根據(jù)條件,可由A,B,C三點共線得出a17-2+a2000=1,進而可得出a1+a2016=3,從而由等差數(shù)列的前n項和公式即可求出S2016的值.

解答 解:若A,B,C在一條直線上,則:
a17-2+a2000=a1+a2016-2=1;
∴a1+a2016=3;
∴${S}_{2016}=\frac{2016({a}_{1}+{a}_{2016})}{2}=1008×3=3024$.
故選A.

點評 考查三點A,B,C共線的充要條件:$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,且x+y=1,以及等差數(shù)列的通項公式及前n項和公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(cosA-cosC,sinB),$\overrightarrow{n}$=(cosB,sinA-sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)若a2+c2+ac=b2,求A;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=20,且a≠c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果log5a+log5b=2,則a+b的最小值是( 。
A.25B.10C.5D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)m為正整數(shù),(x+y)2m展開式的系數(shù)的最大值為a,(2x-y)2m+1展開式的二項式系數(shù)的最大值為b,若17a=9b,則m=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知f(x)=$\frac{1}{3}$x3+3xf′(2),則f′(1)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|x2<1},B={y|y=|x|},則A∩B=(  )
A.B.(0,1)C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知直線l1:3x+2y-1=0和l2:5x+2y+1=0的交點為A
(1)若直線l3:(a2-1)x+ay-1=0與l1平行,求實數(shù)a的值;
(2)求經(jīng)過點A,且在兩坐標軸上截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0,b≥0,c≥0且$\left\{\begin{array}{l}{b+2c≥2a}\\{b+4c≤4a}\\{b-c≤2a}\end{array}\right.$,則$\frac{c+a}{b+a}$的取值范圍是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是公差d≠0的等差數(shù)列,a2、a6、a22成等比數(shù)列,a4+a6=26.
(1)求數(shù)列{an}的通項公式:
(2)令$_{n}{=2}^{n-1}{•a}_{n}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案