6.如果log5a+log5b=2,則a+b的最小值是(  )
A.25B.10C.5D.2$\sqrt{5}$

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:ab=52,再利用基本不等式的性質(zhì)即可得出.

解答 解:∵a,b>0,log5a+log5b=2=log5(ab),
∴ab=52=25≤$(\frac{a+b}{2})^{2}$,解得a+b≥10,當(dāng)且僅當(dāng)a=b=5時(shí)取等號(hào).
則a+b的最小值是10.
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(3-4i)(2+i)=10-5i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=x2+x-1,求f(2x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\frac{{{{({1-i})}^2}}}{1+i}$=a-i,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知α為第二象限角,sinα+cosα=$\frac{1}{5}$,則cos2α=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知A、B是△ABC的內(nèi)角,且cosA=$\frac{1}{3}$,sin(A+B)=1,則sin(3A+2B)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an}的首項(xiàng)a1=1,且公差d>0,它的第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2、3、4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)令dn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{dn}的前n項(xiàng)和Sn
(3)設(shè)數(shù)列{cn}對(duì)任意正整數(shù)n均有$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1成立,求a1c1+a2c2+…+ancn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知{an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,平面內(nèi)三個(gè)不共線(xiàn)向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,滿(mǎn)足$\overrightarrow{OC}$=(a17-2)$\overrightarrow{OA}$+a2000$\overrightarrow{OB}$,若點(diǎn)A,B,C在一條直線(xiàn)上,則S2016=( 。
A.3024B.2016C.1008D.504

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)連續(xù)函數(shù)f(x)滿(mǎn)足f(x)=x-2${∫}_{0}^{1}$f(x)dx,求f(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案