6.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)+3x,則曲線y=f(x)在(1,3)處的切線方程是y=2x+1.

分析 求出x>0時(shí),f(x)=-f(-x)=-lnx+3x,再求出導(dǎo)函數(shù),求出f(1)及f′(1)的值,由直線方程的點(diǎn)斜式寫(xiě)出切線方程.

解答 解:設(shè)x>0,則-x<0,
∵f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)+3x,
∴f(x)=-f(-x)=-lnx+3x,
∴f′(x)=-$\frac{1}{x}$+3,
∴f′(x)=2
∴曲線y=f(x)在(1,3)處的切線方程是y=2x+1.
故答案為y=2x+1.

點(diǎn)評(píng) 考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,關(guān)鍵是熟記基本初等函數(shù)的導(dǎo)數(shù)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;
其中正確的結(jié)論是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合U={1,2,3,4,5,6},M={2,3,5},N={4,6},則(∁UM)∩N=( 。
A.{4,6}B.{1,4,6}C.D.{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:h(x)-8g(x)-h(1)=0;
(2)令p(x)=$\frac{g(x)}{{g(x)+\sqrt{3}}}$,求值:p($\frac{1}{2016}$)+p($\frac{2}{2016}$)+…+p($\frac{2014}{2016}$)+p($\frac{2015}{2016}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題是(  )
A.在△ABC中,若sinA>sinB,則A>BB.在△ABC中,若A≤B,則sinA≤sinB
C.在△ABC中,若sinA<sinB,則A<BD.在△ABC中,若sinA≤sinB,則A≤B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,點(diǎn)M是AB的中點(diǎn),則直線DB1與MC所成角的余弦值為( 。
A.-$\frac{\sqrt{15}}{15}$B.$\frac{\sqrt{15}}{15}$C.$\frac{2\sqrt{15}}{15}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過(guò)直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某學(xué)校為了了解高二年級(jí)學(xué)生對(duì)教師教學(xué)的意見(jiàn),打算從高二年級(jí)883名學(xué)生中抽取80名進(jìn)行座談,若用系統(tǒng)抽樣法抽樣:先用簡(jiǎn)單隨機(jī)抽樣從883人中剔除n人,剩下的人再按系統(tǒng)抽樣的方法進(jìn)行,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)n分別為( 。
A.11,3B.3,11C.3,80D.80,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸極軸建立極坐標(biāo)系,曲線C1,C2的極坐標(biāo)方程分別為$2ρsin(θ-\frac{π}{6})=a(a>0),ρ=2cosθ$
(1)求C1的標(biāo)準(zhǔn)方程和C2的參數(shù)方程;
(2)P,Q分別為C1,C2上的動(dòng)點(diǎn),若線段PQ長(zhǎng)度的最小值為1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案