分析 (Ⅰ)由正弦定理化簡(jiǎn)已知等式得sinA=sinCcosB,整理可得sinBcosC=0,結(jié)合B為內(nèi)角,可求cosC=0,即可求得C的值.
(Ⅱ)由cosA=sin(B-C)利用三角形內(nèi)角和定理和兩角和的余弦函數(shù)公式化簡(jiǎn)可得(sinB+cosB)(sinC-cosC)=0,結(jié)合b<c,由(sinB+cosB)≠0,可解得sinC-cosC=0,即可求得C的值.
解答 解:(Ⅰ)由a=c•cosB及正弦定理,可得sinA=sinCcosB,
既有:sinBcosC+cosBsinC=sinCcosB,
故:sinBcosC=0,
而在△ABC中,sinB≠0,所以cosC=0,既得C=90°.…6分
(Ⅱ)由cosA=sin(B-C)得-cos(B+C)=sinBcosC-cosBsinC,
即有:sinBsinC-cosBcosC=sinBcosC-cosBsinC,
從而:(sinB+cosB)(sinC-cosC)=0,
又因?yàn)閎<c,所以B<C,
所以(sinB+cosB)≠0,
既有sinC-cosC=0,
故解得:C=45°.…12分
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形內(nèi)角和定理和兩角和的余弦函數(shù)公式的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ①② | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 88 | B. | 89 | C. | 90 | D. | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12π+4+4$\sqrt{3}$ | B. | 12π+4$\sqrt{3}$ | C. | 4π+8 | D. | 4π+$\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$-$\frac{1}{6}$ | B. | $\frac{π}{4}$+$\frac{1}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com