如圖,已知中,,點是邊上的動點,動點滿足(點按逆時針方向排列).
(1)若,求的長;
(2)求△面積的最大值.
(1);(2)
【解析】
試題分析:(1)由所以點N在AC上,利用等積法求出AM,再根據(jù)求出AN的值.在三角形AMN中應(yīng)用余弦定理即可得到結(jié)論.
(2)假設(shè),即可表示.利用等積法求出AM,再根據(jù).求出AN.三角形ABN中表示出面積,利用三角函數(shù)的最值的求法,求出△面積的最大值.
試題解析:(1)由得點在射線上,,
因為的面積等于△與△面積的和,
所以,
得:, 3分
又,所以,即,
,即; 6分
(2)設(shè),則,因為的面積等于△與△面積的和,所以,
得:, 7分
又,所以,即,
所以△的面積
即 10分
(其中:為銳角),
所以當時,△的面積最大,最大值是. 12分
考點:1.解三角形的知識.2.余弦定理.3.向量共線.4.三角函數(shù)的最值求法.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
為了調(diào)查你們學(xué)校高中學(xué)生身高分布情況,假設(shè)你的同桌抽取的樣本容量與你抽取的樣本容量相同且抽樣方法合理,則下列結(jié)論正確的是( )
A.你與你的同桌的樣本頻率分布直方圖一定相同
B.你與你的同桌的樣本平均數(shù)一定相同
C.你與你的同桌的樣本的標準差一定相同
D.你與你的同桌被抽到的可能性一定相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若函數(shù)f(x)=sin 2xcos+cos 2x sin(x∈R),其中為實常數(shù),且f(x)≤f()對任意實數(shù)R恒成立,記p=f(),q=f(),r=f(),則p、q、r的大小關(guān)系是( )
A.r<p<q B.q<r<p C.p<q<r D.q<p<r
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為( )
A.() B.() C.(,12) D.(6,l2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在2014年3月15日,某超市對某種商品的銷售量及其售價進行調(diào)查分析,發(fā)現(xiàn)售價x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:
售價x | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y | 11 | 10 | 8 | 6 | 5 |
由散點圖可知,銷售量y與售價x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是:y= -3.2x+a,則a=( )
A.-24 B.35.6 C.40.5 D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
觀察下列等式,若類似上面各式方法將分拆得到的等式右邊最后一個數(shù)是,則正整數(shù)等于____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)對任意的滿足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知.角的終邊與單位圓交點的橫坐標是,則的值是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在銳角中,AC=BC=2,,(其中),函數(shù)的最小值為,則的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com