A. | (0,2$\sqrt{2}$) | B. | (0,4$\sqrt{2}$) | C. | (0,4) | D. | (2$\sqrt{2}$,4$\sqrt{2}$) |
分析 求得圓的圓心和半徑,運用等腰三角形的三線合一和中位線定理,可得M為中點,|MN|=$\frac{1}{2}$|PF1|,由圓的性質可得|MN|的范圍.
解答 解:圓(x-1)2+y2=8的圓心為(1,0),半徑為2$\sqrt{2}$,
令y=0,可得x=1±2$\sqrt{2}$,
$\overrightarrow{{F}_{1}M}$$•\overrightarrow{MP}$=0,可得MP⊥F1M,又MP為∠F1PF2的角平分線,
即有|PF1|=|PQ|,M為F1Q的中點,
又N為PQ的中點,可得|MN|=$\frac{1}{2}$|PF1|,
顯然|PF1|∈(0,4$\sqrt{2}$),即有|MN|∈(0,2$\sqrt{2}$).
故選:A.
點評 本題考查圓的方程和運用,考查平面幾何的三線合一和中位線定理的運用,注意數形結合的思想方法,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $4\sqrt{3}π$ | B. | $\frac{{28\sqrt{7}π}}{3}$ | C. | $8\sqrt{6}π$ | D. | $\frac{{32\sqrt{7}π}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x>1} | B. | {x|-1<x<3} | C. | {x|1<x<3} | D. | {x|-1<x<1} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com