組成一個(gè)由10人組成的球隊(duì),他們由七個(gè)學(xué)校組成,每校至少有一人,其各部分配方案共有
 
種.
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專題:應(yīng)用題,排列組合
分析:由題意知十個(gè)報(bào)送名額之間沒有區(qū)別,可將原問(wèn)題轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空,使用插空法,相當(dāng)于用6塊檔板插在101個(gè)間隔中,計(jì)算可得答案.
解答: 解:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,
可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;
相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有
C
6
9
=84種不同方法.
故答案為:84.
點(diǎn)評(píng):本題考查排列、組合的綜合運(yùn)用,要求學(xué)生會(huì)一些特殊方法的使用,如插空法、隔板法等;但首先應(yīng)該會(huì)把實(shí)際問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)問(wèn)題的模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,0<ω<3,0<φ<π)的圖象的一部分,則ωφ=( 。
A、
π
3
B、
3
C、
12
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,
1
a
+
1
b
=1,則a+b+
a2+b2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC⊥平面B1 BDD1
(2)求二面角A-B1D1-A1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為
3
6
a2 (O為坐標(biāo)原點(diǎn)),則雙曲線的兩條漸近線的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11名工人中,有5人只能當(dāng)鉗工,4人只能當(dāng)車工,另外2人既能當(dāng)鉗工又能當(dāng)車工.先從11人中選出4人當(dāng)鉗工,4人當(dāng)車工,問(wèn)有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,對(duì)其中任何一向量X=(x1,x2,x3),定義范數(shù)||X||,它滿足以下性質(zhì):
(1)||X||≥0,當(dāng)且僅當(dāng)X為零向量時(shí),不等式取等號(hào);
(2)對(duì)任意的實(shí)數(shù)λ,||λX||=|λ|•||X||(注:此處點(diǎn)乘號(hào)為普通的乘號(hào));
(3)||X||+||Y||≥||X+Y||.在平面直角坐標(biāo)系中,有向量X=(x1,x2),
下面給出的幾個(gè)表達(dá)式中,可能表示向量X的范數(shù)的是
 
(把所有正確答案的序號(hào)都填上)
(1)
x
2
1
+2
x
2
2
       (2)
2
x
2
1
-
x
2
2
     (3)
x
2
1
+
x
2
2
+2
       (4)
x
2
1
+
x
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間幾何體PQ-ABC中,PA⊥平面ABC,平面QBC⊥平面ABC,AB=AC,QB=QC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,試比較三棱錐Q-PBC與P-ABC的體積的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x-1,二次函數(shù)g(x)=ax2-x-1
(1)若a<0,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個(gè)公共點(diǎn)且g(x)存在最大值時(shí),記g(x)的最大值為h(a),求函數(shù)h(a)的解析式;
(3)若函數(shù)f(x)與g(x)在區(qū)間(a-2,a)內(nèi)均為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案