組成一個由10人組成的球隊,他們由七個學(xué)校組成,每校至少有一人,其各部分配方案共有
 
種.
考點:排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:由題意知十個報送名額之間沒有區(qū)別,可將原問題轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空,使用插空法,相當(dāng)于用6塊檔板插在101個間隔中,計算可得答案.
解答: 解:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,
可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;
相當(dāng)于用6塊檔板插在9個間隔中,共有
C
6
9
=84種不同方法.
故答案為:84.
點評:本題考查排列、組合的綜合運(yùn)用,要求學(xué)生會一些特殊方法的使用,如插空法、隔板法等;但首先應(yīng)該會把實際問題轉(zhuǎn)化為對應(yīng)問題的模型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,0<ω<3,0<φ<π)的圖象的一部分,則ωφ=( 。
A、
π
3
B、
3
C、
12
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,
1
a
+
1
b
=1,則a+b+
a2+b2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC⊥平面B1 BDD1
(2)求二面角A-B1D1-A1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點F,右準(zhǔn)線與一條漸近線交于點A,△OAF的面積為
3
6
a2 (O為坐標(biāo)原點),則雙曲線的兩條漸近線的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11名工人中,有5人只能當(dāng)鉗工,4人只能當(dāng)車工,另外2人既能當(dāng)鉗工又能當(dāng)車工.先從11人中選出4人當(dāng)鉗工,4人當(dāng)車工,問有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,對其中任何一向量X=(x1,x2,x3),定義范數(shù)||X||,它滿足以下性質(zhì):
(1)||X||≥0,當(dāng)且僅當(dāng)X為零向量時,不等式取等號;
(2)對任意的實數(shù)λ,||λX||=|λ|•||X||(注:此處點乘號為普通的乘號);
(3)||X||+||Y||≥||X+Y||.在平面直角坐標(biāo)系中,有向量X=(x1,x2),
下面給出的幾個表達(dá)式中,可能表示向量X的范數(shù)的是
 
(把所有正確答案的序號都填上)
(1)
x
2
1
+2
x
2
2
       (2)
2
x
2
1
-
x
2
2
     (3)
x
2
1
+
x
2
2
+2
       (4)
x
2
1
+
x
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間幾何體PQ-ABC中,PA⊥平面ABC,平面QBC⊥平面ABC,AB=AC,QB=QC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,試比較三棱錐Q-PBC與P-ABC的體積的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x-1,二次函數(shù)g(x)=ax2-x-1
(1)若a<0,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最大值時,記g(x)的最大值為h(a),求函數(shù)h(a)的解析式;
(3)若函數(shù)f(x)與g(x)在區(qū)間(a-2,a)內(nèi)均為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案