已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與y軸垂直,求a的值;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間(0,2]上的最小值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)f′(x)=ex(ax2-2x+2ax-2-2)=ex(ax-2)(x+2),從而令f′(2)=e2(2a-2)(2+2)=0解得;
(2)由(1)知,f′(x)=ex(ax-2)(x+2),x∈(0,2];從而可得f(x)的單調(diào)性,從而求最值.
解答: 解:(1)∵f′(x)=ex(ax2-2x+2ax-2-2)=ex(ax-2)(x+2),
∴f′(2)=e2(2a-2)(2+2)=0,
∴a=1;
(2)f′(x)=ex(ax-2)(x+2),x∈(0,2];
∵a>0,
∴當(dāng)x∈(
2
a
,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(0,
2
a
)時(shí),f′(x)<0,f(x)單調(diào)遞減;
故當(dāng)
2
a
≥2,即0<a≤1時(shí),fmin(x)=f(2)=e2(4a-6);
當(dāng)0<
2
a
<2,即a>1時(shí),fmin(x)=f(
2
a
)=-2e
2
a
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類討論的數(shù)學(xué)思想應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)的圖象是函數(shù)f(x)=sin2x-
3
cos2x的圖象向右平移
π
3
個(gè)單位得到的,則函數(shù)的圖象的對(duì)稱軸可以為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(-3,2)在拋物線C:y2=2px(p>0)的準(zhǔn)線上,過(guò)點(diǎn)P的直線與拋物線C相切于A,B兩點(diǎn),則直線AB的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知PA是圓O(O為圓心)的切線,切點(diǎn)為A,PO交圓O于B,C兩點(diǎn),AC=
3
,∠PAB=30°,求線段PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P是曲線y=x2-lnx任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,MA⊥平面ABCD,MA∥PB,PB=AB=2MA=2.
(1)P、C、D、M四點(diǎn)是否在同一平面內(nèi),為什么?
(2)求證:面PBD⊥面PAC;
(3)求直線BD和平面PMD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=4x,點(diǎn)P(m,0),O為坐標(biāo)原點(diǎn),若在拋物線C上存在一點(diǎn)Q,使得∠OQP=90°,則實(shí)數(shù)m的取值范圍是(  )
A、(4,8)
B、(4,+∞)
C、(0,4)
D、(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
lgx,    x>0
x2-4,  x<0
的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是計(jì)算
1
2
+
1
4
+
1
8
+
1
16
+
1
32
值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A、K>5?B、K<5?
C、K>10?D、K<10?

查看答案和解析>>

同步練習(xí)冊(cè)答案