在(1+2-(1+4的展開式中,x的系數(shù)等于    .(用數(shù)字作答)
【答案】分析:分別求出兩個二項式展開式中x的系數(shù),即可得到展開式中x的系數(shù).
解答:解:(1+2的展開式中,x的系數(shù)是:=1;
-(1+4的展開式中,x的系數(shù)是-=-4;
所以在(1+2-(1+4的展開式中,x的系數(shù)是:-3.
故答案為:-3.
點評:本題是基礎題,考查二項式定理的應用,特定項的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在計算“1×2+2×3+…+n(n+1)”時,有如下方法:
先改寫第k項:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
類比上述方法,請你計算“1×3+2×4+…+n(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形式為:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-alnx在(1,2]是增函數(shù),g(x)=x-a
x
在(0,1)為減函數(shù).
(1)求f(x)、g(x)的表達式;
(2)求證:當x>0時,方程f(x)=g(x)+2有唯一解;
(3)當b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1]內(nèi)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若在區(qū)間[1,2]上f′(x)>0,則f(x)(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在計算“1×2+2×3+…+n(n+1)”時,有如下方法:
先改寫第k項:k(k+1)=數(shù)學公式[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=數(shù)學公式(1×2×3-0×1×2),
2×3=數(shù)學公式(2×3×4-1×2×3),…,
n(n+1)=數(shù)學公式[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=數(shù)學公式(n+1)(n+2).
類比上述方法,請你計算“1×3+2×4+…+n(n+2)”,其結(jié)果寫成關(guān)于n的一次因式的積的形式為:________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若在區(qū)間[1,2]上f′(x)>0,則f(x)( 。
A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù)
B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù)
C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù)
D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

同步練習冊答案