6.已知橢圓焦點(diǎn)在y軸上,且過(0.,2)和(1,0)兩個(gè)點(diǎn),則這個(gè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{1}$=1.

分析 根據(jù)題意,由橢圓的焦點(diǎn)的位置可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1,又由橢圓所過點(diǎn)的坐標(biāo)可得a、b的值,將其代入橢圓的標(biāo)準(zhǔn)方程,即可得答案.

解答 根據(jù)題意,橢圓焦點(diǎn)在y軸上,可以設(shè)其標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1,
又由橢圓過(0,2)和(1,0),
則有a=2,b=1,
則橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{1}$=1;
故答案為:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{1}$=1.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,注意橢圓的焦點(diǎn)的位置.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解某地區(qū)居民用水情況,通過抽樣,獲得了100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,1],[1,2),…[4,5]分成5組,制成了如圖所示的頻率分布直方圖.
(1)估計(jì)這100位居民月均用水量的樣本平均數(shù)$\overline{x}$和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,保留1位小數(shù)).
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該地區(qū)居民每人的月均用水量符合“月均用水量超過3噸的人數(shù)不能占全部人數(shù)30%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.(1-i)(2+i)=( 。
A.1-iB.3-iC.1+3iD.3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間[-1,4]上隨機(jī)選取一個(gè)數(shù)x,則x≤1的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5x,x>0}\\{-2,x=0}\\{(x+3)^{\frac{1}{2}},x<0}\end{array}\right.$,b=f(f(f(0))),若y=xa-b是偶函數(shù),且在(0,+∞)上是減函數(shù),則自然數(shù)a=1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的首項(xiàng)為a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$,(n∈N*).
(I)求a2,a3的值.
(2)證明:a2n-1<a2n+1<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三角形三個(gè)頂點(diǎn)分別是A(-3,0),B(2,-2),C(0,1),求這個(gè)三角形三邊各自所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow a=(cosθ,sinθ),\overrightarrow b=(1,-1)-\frac{π}{2}≤θ≤\frac{π}{2}$
(1)當(dāng)$\overrightarrow a⊥\overrightarrow b$時(shí),求θ值;
(2)求$|\overrightarrow a-\overrightarrow b|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知c2sinAcosA+a2sinCcosC=4sinB,cosB=$\frac{\sqrt{7}}{4}$,D是AC上一點(diǎn),且S△BCD=$\frac{2}{3}$,則$\frac{AD}{AC}$等于( 。
A.$\frac{3}{7}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案