分析 (1)由a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*),運(yùn)用代入法,計(jì)算可得a2,a3.
(2)利用$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,可得數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比數(shù)列,首項(xiàng)為-3,公比為-3,再由等比數(shù)列的通項(xiàng)公式可得an,再由不等式的性質(zhì)即可證明.
解答 解:(1)∵a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*).
∴a2=$\frac{{a}_{1}+4}{{a}_{1}+1}$=$\frac{5}{2}$,a3=$\frac{{a}_{2}+4}{{a}_{2}+1}$=$\frac{13}{7}$.
(2)證明:$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{\frac{{a}_{n}+4}{{a}_{n}+1}+2}{\frac{{a}_{n}+4}{{a}_{n}+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,
∴數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比數(shù)列,首項(xiàng)為-3,公比為-3.
∴$\frac{{a}_{n}+2}{{a}_{n}-2}$=(-3)n,
解得an=2+$\frac{4}{(-3)^{n}-1}$,
∴a2n-1=2-$\frac{4}{{3}^{2n-1}+1}$<2-$\frac{4}{{3}^{2n+1}+1}$=a2n+1<2.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1193 | B. | 1359 | C. | 2718 | D. | 3413 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 30 | C. | 40 | D. | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com