9.已知角θ的終邊過(guò)點(diǎn)(2,3),則tan($\frac{11π}{4}$+θ)=( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

分析 利用任意角的三角函數(shù)的定義求得tanθ的值,再利用兩角差的正切公式求得tan($\frac{11π}{4}$+θ)的值.

解答 解:∵角θ的終邊過(guò)點(diǎn)(2,3),∴tanθ=$\frac{3}{2}$,
則tan($\frac{11π}{4}$+θ)=tan(θ-$\frac{π}{4}$+3π)=tan(θ-$\frac{π}{4}$)=$\frac{tanθ-1}{1+tanθ}$=$\frac{\frac{3}{2}-1}{1+\frac{3}{2}}$=$\frac{1}{5}$,
故選:B.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,在正三棱柱ABC-A1B1C1中,點(diǎn)D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點(diǎn)E是B1C1的中點(diǎn),求證:AE∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(Ⅰ)設(shè)$a=2,\;b=\frac{1}{2}$,求方程f(x)=2的根;
(Ⅱ)設(shè)$a=\frac{1}{3},\;b≥3$,函數(shù)g(x)=f(x)-2,已知b>3時(shí)存在x0∈(-1,0)使得g(x0)<0.若g(x)=0有且只有一個(gè)零點(diǎn),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,${a_1}=1,S_n^2={a_n}({S_n}-\frac{1}{2})(n≥2)$
(1)求證數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列,并求Sn
(2)設(shè)bn=$\frac{S_n}{2n+3},{T_n}={b_1}+{b_2}+{b_3}+…+{b_n}$,求Tn
(3)若對(duì)任意正整數(shù)n不等式(4n2-4n+10)Sn>(-1)n•a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知兩組數(shù)A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,其中yi=2xi+3,(i=1,2,3,4,5,6,7),A組數(shù)的平均數(shù)與方差分別記為$\overline{x}$,SA2,B組數(shù)的平均數(shù)與方差分別記為$\overline{y}$,SB2,則下面關(guān)系式正確的是( 。
A.$\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3B.$\overline{y}$=2$\overline{x}$+3,sB2=4sA2
C.$\overline{y}$=2$\overline{x}$,sB2=4sA2D.$\overline{y}$=2$\overline{x}$,sB2=4sA2+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:C′E∥面AB′D′;
(2)求面AB'D'與面ABD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,三個(gè)內(nèi)角A,B,C成等差數(shù)列,則cos(A+C)的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為$\frac{1}{2}$(O是坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C上的一點(diǎn),過(guò)P的直線l與以橢圓的短軸為直徑的圓切于第一象限,切點(diǎn)為M,證明:|PF|+|PM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如圖,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人.
(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;
(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占$\frac{1}{3}$)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī).
數(shù)學(xué)888311792108100112
物理949110896104101106
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\;\hat α=\overline v-\hat β\overline u$.

查看答案和解析>>

同步練習(xí)冊(cè)答案