(1)求經(jīng)過(guò)點(diǎn)A(3,2),B(-2,0)的直線方程。
(2)求過(guò)點(diǎn)P(-1,3),并且在兩軸上的截距相等的直線方程;
(1);(2)

試題分析:(1) 求出斜率,代入點(diǎn)斜式直線方程;(2)分兩種情況,截距為0時(shí),過(guò)原點(diǎn)的直線方程或是設(shè)成,代入點(diǎn)求出.
試題解析:解:(1),由點(diǎn)斜式得所求直線方程:   6分
(2)當(dāng)直線的截距為0時(shí),直線方程為y=-3x;    8分
當(dāng)直線的截距不為0時(shí),可設(shè)直線方程為x+y=m,將P(-1,3)代入可得m=2,直線方程為x+y=2    11分故所求直線方程為3x+y=0,或x+y-2=0   12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求垂直于直線并且與曲線相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C1和拋物線C2的焦點(diǎn)均在軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表中:

3
-2
4



0
-4

 
(1)求曲線C1,C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓C1交于不同兩點(diǎn)M、N,且。請(qǐng)問(wèn)是否存在直線過(guò)拋物線C2的焦點(diǎn)F?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)點(diǎn)A(-2,3),B(3,2),若直線ax+y+2=0與線段AB沒(méi)有交點(diǎn),則a的取值范圍是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知A(2,4)與B(3,3)關(guān)于直線l對(duì)稱,則直線l的方程為 (   ).
A.x+y=0B.x-y=0
C.x-y+1=0D.x+y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分為兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線l:y=3x+3,那么直線x-y-2=0關(guān)于直線l對(duì)稱的直線方程為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線,則直線的夾角的大小是.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線l1:y=kx+k+2與l2:y=-2x+4的交點(diǎn)在第一象限,則實(shí)數(shù)k的取值范圍是(  )
A.k>-B.k<2C.-<k<2D.k<-或k>2

查看答案和解析>>

同步練習(xí)冊(cè)答案