17.下列命題正確的個(gè)數(shù)為( 。
①若函數(shù)f(x)滿足f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對(duì)稱;
②函數(shù)y=f(x-1)與函數(shù)y=f(1-x)關(guān)于直線x=1對(duì)稱;
③函數(shù)y=f(x+1)與函數(shù)y=f(1-x)關(guān)于直線x=1對(duì)稱;
④垂直于同一直線的兩條直線的位置關(guān)系是平行或相交;
⑤$\overrightarrow{a}$=(1,2)沿x軸向右平移1個(gè)單位后$\overrightarrow{a}$=(2,2)
A.1B.2C.3D.4

分析 利用函數(shù)的基本性質(zhì),對(duì)稱軸,對(duì)稱中心,周期,分別對(duì)選項(xiàng)驗(yàn)證,判定正誤即可.

解答 解:①若函數(shù)f(x)滿足f(x)=f(2-x),則函數(shù)f(x)關(guān)于直線x=1對(duì)稱,正確;
②∵f(x)與y=f(-x)的圖象關(guān)于直線x=0對(duì)稱,函數(shù)y=f(x-1)與y=f(1-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了一個(gè)單位而得到,從而可得函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱,正確;
③∵f(x)與y=f(-x)的圖象關(guān)于直線x=0對(duì)稱,函數(shù)y=f(x+1)可以由f(x)的圖象向左移了一個(gè)單位而得到,y=f(1-x)的圖象可以由y=f(-x)的圖象向右移了一個(gè)單位而得到,從而可得函數(shù)y=f(x+1)與函數(shù)y=f(1-x)關(guān)于直線x=0對(duì)稱,不正確;
④垂直于同一直線的兩條直線的位置關(guān)系是平行或相交或異面,不正確;
⑤$\overrightarrow{a}$=(1,2)沿x軸向右平移1個(gè)單位后$\overrightarrow{a}$=(1,2),不正確.
故選B.

點(diǎn)評(píng) 本題考查函數(shù)圖象的對(duì)稱性,函數(shù)的周期性,考查學(xué)生靈活運(yùn)用知識(shí)的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈[{\frac{π}{6},\frac{2π}{3}})$.
(1)求$\overrightarrow a$•$\overrightarrow b$及|$\overrightarrow a$-$\overrightarrow b$|;
(2)若f(x)=$\overrightarrow a$•$\overrightarrow b$-|$\overrightarrow a$-$\overrightarrow b$|,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,0),若向量$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{c}$=(1,-2)垂直,則實(shí)數(shù)λ等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.A={x|x2-5x+6=0},B={x|mx=1},若B⊆A,則實(shí)數(shù)m={0,$\frac{1}{2}$,$\frac{1}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.將f(x)=2sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間(a,b)上含有20個(gè)零點(diǎn),則b-a的最大值為(  )
A.10πB.$\frac{31}{3}$πC.$\frac{32}{3}$πD.11π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.橢圓$\frac{x^2}{100}$+$\frac{y^2}{64}$=1上一點(diǎn)P到橢圓左焦點(diǎn)的距離為7,則點(diǎn)P到右焦點(diǎn)的距離為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),則實(shí)數(shù)a的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$.
(1)若sin$\frac{3π}{4}$sinφ-cos$\frac{π}{4}$cosφ=0,求φ的值;
(2)在(1)的條件下,函數(shù)f(x)圖象相鄰兩對(duì)稱軸之間的距離為$\frac{π}{3}$,求f(x)的解析式;
(3)在(2)條件下,將函數(shù)f(x)左移m個(gè)單位后得到偶函數(shù)時(shí),求最小正實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬(wàn)元)之間有如表對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測(cè)當(dāng)廣告費(fèi)支出7(百萬(wàn)元)時(shí)的銷售額.
參考公式:用最小二乘法求線性回歸方程,其中系數(shù)$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案