【題目】已知圓M:,直線l:,A為直線l上一點.
若,過A作圓M的兩條切線,切點分別為P,Q,求的大小;
若圓M上存在兩點B,C,使得,求點A橫坐標的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},則A∩B=( )
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四面體中, 在平面的射影為棱的中點, 為棱的中點,過直線作一個平面與平面平行,且與交于點,已知, .
(1)證明: 為線段的中點
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠2016年計劃生產A、B兩種不同產品,產品總數不超過300件,生產產品的總費用不超過9萬元.A、B兩個產品的生產成本分別為每件500元和每件200元,假定該工廠生產的A、B兩種產品都能銷售出去,A、B兩種產品每件能給公司帶來的收益分別為0.3萬元和0.2萬元.問該工廠如何分配A、B兩種產品的生產數量,才能使工廠的收益最大?最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為( )
A.
B.2π
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】建造一間地面面積為12的背面靠墻的豬圈, 底面為長方形的豬圈正面的造價為120元/, 側面的造價為80元/, 屋頂造價為1120元. 如果墻高3, 且不計豬圈背面的費用, 問怎樣設計能使豬圈的總造價最低, 最低總造價是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均不相等的等差數列{an}的前四項和S4=14,且a1 , a3 , a7成等比數列. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設Tn為數列{ }的前n項和,若Tn≤λan+1對n∈N*恒成立,求實數λ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,x軸為極軸建立極坐標系,曲線C1的方程為 (θ為參數),曲線C2的極坐標方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點.
(1)求|AB|的值;
(2)求點M(﹣1,2)到A、B兩點的距離之積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com