過(guò)點(diǎn)P(4,2)作圓x2+y2=4的兩條切線,切點(diǎn)分別為A、B,O為坐標(biāo)原點(diǎn),則△PAB的外接圓方程是(  )
A、(x-2)2+(y-1)2=5
B、(x-4)2+(y-2)2=20
C、(x+2)2+(y+1)2=5
D、(x+4)2+(y+2)2=20
考點(diǎn):圓的切線方程
專題:直線與圓
分析:根據(jù)已知圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)圓心為坐標(biāo)原點(diǎn),根據(jù)題意可知,△ABP的外接圓即為四邊形OAPB的外接圓,從而得到線段OP為外接圓的直徑,其中點(diǎn)為外接圓的圓心,根據(jù)P和O兩點(diǎn)的坐標(biāo)利用兩點(diǎn)間的距離公式求出|OP|的長(zhǎng)即為外接圓的直徑,除以2求出半徑,利用中點(diǎn)坐標(biāo)公式求出線段OP的中點(diǎn)即為外接圓的圓心,根據(jù)求出的圓心坐標(biāo)和半徑寫出外接圓的方程即可.
解答: 解:由圓x2+y2=4,得到圓心O坐標(biāo)為(0,0),
∴△ABP的外接圓為四邊形OAPB的外接圓,又P(4,2),
∴外接圓的直徑為|OP|=
42+22
=2
5
,半徑為
5

外接圓的圓心為線段OP的中點(diǎn)是(
4+0
2
,
2+0
2
),即(2,1),
則△ABP的外接圓方程是(x-2)2+(y-1)2=5.
故選:A.
點(diǎn)評(píng):本題考查了直線與圓的位置關(guān)系,要求學(xué)生熟練運(yùn)用兩點(diǎn)間的距離公式及中點(diǎn)坐標(biāo)公式.根據(jù)題意得到△ABP的外接圓為四邊形OAPB的外接圓是本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2-px+6=0},N={x|x2+6x-q=0},若M∩N={2},則p+q的值為( 。
A、21B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x(3-x)>0},集合B={y|y=2x+2},則A∩B=(  )
A、{x|2<x<3}
B、{x|x<0或x>2}
C、{x|x>3}
D、{x|x<0或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式組
x+y≥1
2y-x≤2
y≥
m
 x
表示的平面區(qū)域內(nèi)存在點(diǎn)M(x0,y0),滿足2x0+y0=6,則實(shí)數(shù)m的取值范圍是( 。
A、[1,+∞)
B、[0,1]
C、(0,1)
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

多面體MN-ABCD的底面ABCD為矩形,其正視圖和側(cè)視圖如圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,則該多面體的體積是( 。
A、
16+
3
3
B、
8+6
3
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-2<x≤1},B={x|2x≤1},則A∩B等于( 。
A、{x|-2<x≤-1}
B、{x|-2<x≤1}
C、{x|-2<x≤0}
D、{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校在一次期末數(shù)學(xué)統(tǒng)測(cè)中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績(jī),被測(cè)學(xué)生成績(jī)?nèi)拷橛?0分到140分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組[60,70),第二組[70,80),…,第八組[130,140],如圖是按上述分組方法得到的頻率分布直方圖的一部分. 
(Ⅰ)求第七組的頻率,并完成頻率分布直方圖;
(Ⅱ)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分(可用中值代替各組數(shù)據(jù)平均值);
(Ⅲ)若從樣本成績(jī)屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取兩名,求他們的分差不小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx-x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當(dāng)x>1時(shí),在(1)的條件下,
1
2
x2+ax-a>xlnx+
1
2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+
1
2
,a∈R.
(1)當(dāng)a=-
1
3
時(shí),求f(x)的最大值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)如果對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案