【題目】如圖,在底面是矩形的四棱錐PABCD中,PA平面ABCD,PA = AB = 2,BC = 4, EPD的中點(diǎn),

1)求證: 平面EAC;

2)求證:平面PDC平面PAD

3)求多面體的體積.

【答案】1見解析2見解析34

【解析】試題分析:

(1)做出輔助線,由結(jié)合線面平行的判斷定理即可證得平面EAC

(2)由題意可證得CD⊥平面PAD,結(jié)合面面垂直的判斷定理即可證得平面PDC⊥平面PAD;

(3)將原問題轉(zhuǎn)化為組合體體積之差的問題,分別求解體積值可得多面體的體積是4.

試題解析:

1)連接BDAC于點(diǎn)G,連接EG,因?yàn)?/span>EPD的中點(diǎn),GBD的中點(diǎn),

所以,又因?yàn)?/span>,

所以.

2,.

    , . , 平面

. .

3,因?yàn)?/span>EPD的中點(diǎn), ,

所以點(diǎn)E到平面ADC的距離是, ,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點(diǎn)在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實(shí)數(shù)的取值范圍;

2的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn)

1求線段的中點(diǎn)的軌跡的方程;

2是否存在實(shí)數(shù),使得直線與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤÷保費(fèi)收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計(jì)平均收益率;

(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

據(jù)此計(jì)算出的回歸方程為.

(i)求參數(shù)的估計(jì)值;

(ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個(gè)銳角αβ,它們的終邊分別與單位圓相交于AB兩點(diǎn),已知A,B的橫坐標(biāo)分別為 .求:

1tan(αβ)的值;

2α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際奧委會(huì)將于2017年9月15日在秘魯利馬召開130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯(cuò)誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡sin(x+y)sinx+cos(x+y)cosx等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:

(1)求的值;

(2)求證:數(shù)列是等比數(shù)列;

(3)令),如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案