(本小題滿分12分)已知數(shù)列{an}的前n項(xiàng)和為Sn, 且滿足條件:4S n =+ 4n – 1 , nÎN*.
(1) 證明:(a n– 2)2 –=0 (n ³ 2);(2) 滿足條件的數(shù)列不惟一,試至少求出數(shù)列{an}的的3個不同的通項(xiàng)公式 .
(2) 當(dāng)a1 =1且a n + an – 1 = 2時,得an =1. 2)當(dāng)a1 =1且a n – a n – 1 = 2 時,得an = 2n–1 .
3)當(dāng)a1 =3且a n – a n – 1 = 2 時,得an = 2n + 1 . 4)當(dāng)a1 =3且a n + an – 1 = 2時,得an =2(–1)n+ 1 + 1.
(1) 由條件4S n =+ 4n – 1 , nÎN*.得4S n – 1 =+ 4(n – 1 ) – 1,
相減得:4a n = – + 4,化成–4a n+ 4–= 0,
∴ (a n– 2)2 –=0 . 4分
(2) 由(1)得:(a n –2 + an – 1 )(a n –2 – a n – 1 ) = 0∴ a n + an – 1 = 2 或a n – a n – 1 = 2 . 2分
在4S n =+ 4n – 1中,令n = 1,得4a1 =+ 4 – 1,解得:a1 =1或 a1 =3. 2分
分四種情況:
1)當(dāng)a1 =1且a n + an – 1 = 2時,得an =1.
2)當(dāng)a1 =1且a n – a n – 1 = 2 時,得an = 2n–1 .
3)當(dāng)a1 =3且a n – a n – 1 = 2 時,得an = 2n + 1 .
4)當(dāng)a1 =3且a n + an – 1 = 2時,得an =2(–1)n+ 1 + 1. 每個1分,有3個即可
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com