8.若log9(3a+4b)=log3$\sqrt{ab}$,則a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

分析 根據(jù)對數(shù)的運算性質(zhì)可得$\frac{4}{a}$+$\frac{3}$=1,a,b>0,再根據(jù)基本不等式即可求出.

解答 解:∵log9(3a+4b)=log3$\sqrt{ab}$,則
∴3a+4b=ab,
∴$\frac{4}{a}$+$\frac{3}$=1,a,b>0.
∴a+b=(a+b)($\frac{4}{a}$+$\frac{3}$)=4+3+$\frac{4b}{a}$+$\frac{3a}$≥7+2$\sqrt{\frac{4b}{a}•\frac{3a}}$=7+4$\sqrt{3}$
當(dāng)且僅當(dāng)a=4+2$\sqrt{3}$時取等號.
∴a+b的最小值是7+4$\sqrt{3}$.
故選:D.

點評 本題考查了對數(shù)的運算性質(zhì)、基本不等式的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知關(guān)于x的方程t(2-cosx)=1-sinx在(0,π)上有實根,則實數(shù)t的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)f(x)=lg(x2-x-2)的定義域為集合A,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,曲線Γ由曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和曲線C2::$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,y≤0)組成,其中點F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點,點F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點,已知F2(2,0)F4(6,0).
(1)求曲線C1和C2的方程
(2)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點A,B,求證:弦AB的中點M必在曲線C2的另一條漸近線上.
(3)若直線l1過點F4交曲線C1于點C,D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a,2b,c成等差數(shù)列,則cosB的最小值為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1,設(shè)棱長為a,過BD且與直線AC1平行的截面面積是( 。
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機變量η,ξ具有關(guān)系η=3ξ+2,且E(ξ)=1,D(η)=9,則下列式子中正確的是( 。
A.E(η)=5,D(ξ)=3B.E(η)=3,D(ξ)=27C.E(η)=9,D(ξ)=81D.E(η)=5,D(ξ)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系xOy中,P是橢圓$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1上的一個動點,點A(1,1),B(0,-1),則|PA|+|PB|的最大值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={0,2},無窮數(shù)列{an}滿足an∈M,且$t=\frac{a_1}{3}+\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,則實數(shù)t一定不屬于( 。
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

同步練習(xí)冊答案