若曲線 y=x2 上P點(diǎn)處的切線平行于 2x-y+1=0,則點(diǎn)P的坐標(biāo)是( 。
A、( 1,-1)
B、(-1,1)
C、( 1,1)
D、(-1,-1)
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在P點(diǎn)處的導(dǎo)數(shù)值,由導(dǎo)數(shù)值等于2求得P的橫坐標(biāo),代入函數(shù)解析式的到縱坐標(biāo),則答案可求.
解答: 解:∵y=x2,
∴y′=2x,
設(shè)P(x0,y0),則y|x=x0=2x0
又曲線 y=x2 上P點(diǎn)處的切線平行于 2x-y+1=0,
∴2x0=2,x0=1,
y0=x02=1
故選:C.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,過(guò)曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1,Sn為其前n項(xiàng)和,且滿足2an+1=Sn+2.
(1)求a2,a3的值,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
3
an
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求使不等式Tn
k
3
對(duì)任意n∈N恒成立的最大正整數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且2acosA=ccosB+bcosC.
(1)求角A;
(2)若a=
3
,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=2x-x+α,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c是實(shí)數(shù),則下列結(jié)論中一定正確的是(  )
A、若a>b,則ac>bc
B、若a>b,則a-c<b-c
C、若ac>bc,則a>b
D、若a>|b|,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+sinxcosx,g(x)=cos2(x+
π
12
).
(1)設(shè)(x0,1)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心,求g(x0)的值;
(2)求使函數(shù)h(x)=f(
ωx
2
)+g(
ωx
2
)(ω>0)在區(qū)間[-
3
,
π
3
]上是增函數(shù)的ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與圓x2+(y-2)2=2相切,且在兩坐標(biāo)軸上截距相等的直線有( 。
A、6條B、4條C、3條D、2條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,4),則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一束光線l自A(-3,3)發(fā)出,射到x軸上,被x軸反射到⊙C:x2+y2-4x-4y+7=0上,當(dāng)反射線通過(guò)圓心C時(shí),光線l的方程
 

查看答案和解析>>

同步練習(xí)冊(cè)答案