2、命題:“?x∈R,x2-x+2≥0”的否定是( 。
分析:利用含量詞的命題的否定形式是:將“?“改為“?”結(jié)論否定,寫出命題的否定.
解答:解:利用含量詞的命題的否定形式得到:
命題:“?x∈R,x2-x+2≥0”的否定是
“?x∈R,x2-x+2<0”
故選C
點(diǎn)評(píng):考查含有全稱量詞的命題的否定.注意與否命題的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以下四個(gè)命題( 。
①命題“若x=2則x2=4”的逆否命題;
②“a=
π
4
”是“sin2a=1”的充要條件
③命題p:?x∈R,x-x+1<0,則?p:?x∈R,x-x+1>0;
④若p∧q為假,p∨q為真;則p、q有且僅有一個(gè)是真命題;
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在x∈R,使得x2≥0”的否定為( 。
A、對(duì)任意x∈R,使得
x
2
0
≥0
B、不存在x∈R,使得x2≥0
C、對(duì)任意x∈R,都有x2<0
D、存在x0∈R,使得
x
2
0
<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在下列四個(gè)命題中
(1)命題“存在x∈R,x2-x>0”的否定是:“任意x∈R,x2-x<0”;
(2)y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是周期為4的周期函數(shù);
(3)命題p:任意x∈[0,1],ex≥1,命題q:存在x∈R,x2+x+1<0,則p或q為真;
(4)若a=-1則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn).
其中錯(cuò)誤的個(gè)數(shù)是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年陜西省咸陽(yáng)市高考數(shù)學(xué)模擬考試試卷2(理科)(解析版) 題型:選擇題

在下列四個(gè)命題中
(1)命題“存在x∈R,x2-x>0”的否定是:“任意x∈R,x2-x<0”;
(2)y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是周期為4的周期函數(shù);
(3)命題p:任意x∈[0,1],ex≥1,命題q:存在x∈R,x2+x+1<0,則p或q為真;
(4)若a=-1則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn).
其中錯(cuò)誤的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西師大附中高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:選擇題

在下列四個(gè)命題中
(1)命題“存在x∈R,x2-x>0”的否定是:“任意x∈R,x2-x<0”;
(2)y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是周期為4的周期函數(shù);
(3)命題p:任意x∈[0,1],ex≥1,命題q:存在x∈R,x2+x+1<0,則p或q為真;
(4)若a=-1則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn).
其中錯(cuò)誤的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案