【題目】某船在處測得燈塔在其南偏東方向上,該船繼續(xù)向正南方向行駛5海里到處,測得燈塔在其北偏東方向上,然后該船向東偏南方向行駛2海里到處,此時船到燈塔的距離為多少海里( )

A.千米B.千米C.6千米D.5千米

【答案】A

【解析】

根據(jù)已知條件可畫出圖形,在處測得燈塔在其南偏東方向,即,在處測得燈塔在其北偏東方向上,即,可得,船向東偏南方向行駛2海里到處即,再由余弦定理即可得的距離.

根據(jù)題意可畫圖形(如圖)

因為在處測得燈塔在其南偏東方向,即,

船繼續(xù)向正南方向行駛5海里到處即,

處測得燈塔在其北偏東方向上,即

所以為一個等邊三角形,即

船向東偏南方向行駛2海里到處,

根據(jù)圖形可得:,

中,由余弦定理可得:

,

解得:

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數(shù)據(jù)如下表:

時間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).ft),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).

(1)令,求x的取值范圍;

(2)若規(guī)定每天中ft)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,下列結(jié)論中正確的是( )

A. B.

C. 是數(shù)列中的最大值 D. 數(shù)列無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點.

1)求證: 平面;

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了改善居民的休閑娛樂活動場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路,要求點的中點,點在邊上,點在邊時上,且.

1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費用均為元,試問如何設(shè)計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,分別為,的中點

(1)求證:

(2)在棱上是否存在一點,使得,若存在,試確定的值,若不存在說明理由;

(3)在(2)的條件下,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性 ;

(2)若對任意恒成立,求實數(shù)的取值范圍;

(3)當時,若函數(shù)有兩個極值點,求

的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

同步練習(xí)冊答案