19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{1}{2}$,且與y軸的正半軸的交點(diǎn)為$(0,2\sqrt{3})$,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的左焦點(diǎn).
(1)求橢圓C1與拋物線C2的標(biāo)準(zhǔn)方程;
(2)過(guò)(1,0)的兩條相互垂直直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.

分析 (1)設(shè)半焦距為c(c>0),利用離心率,短半軸,求出a,b,頂點(diǎn)橢圓C1的標(biāo)準(zhǔn)方程,設(shè)拋物線C2的標(biāo)準(zhǔn)方程為y2=2px(p>0),求出p,頂點(diǎn)拋物線C2的標(biāo)準(zhǔn)方程.
(2)由題意易得兩條直線的斜率存在且不為0,設(shè)其中一條直線l1的斜率為k,直線l1方程為y=k(x-1),則另一條直線l2的方程為$y=-\frac{1}{k}(x-1)$,聯(lián)立$\left\{\begin{array}{l}y=k(x-1)\\{y^2}=8x\end{array}\right.$得k2x2-(2k2+8)x+k2=0,△=32k2+64>0,設(shè)直線l1與拋物線C2的交點(diǎn)為A,B,則$|AB|=\frac{{4\sqrt{{k^2}+1}•\sqrt{2{k^2}+4}}}{k^2}$,同理求出|CD|=4$\sqrt{{k}^{2}+1}•\sqrt{4{k}^{2}+2}$求出
四邊形的面積利用基本不等式求解最值.

解答 解:(1)設(shè)半焦距為c(c>0),由題意得$e=\frac{c}{a}=\frac{1}{2},b=2\sqrt{3}$,∴$a=4,b=2\sqrt{3},c=2$,∴橢圓C1的標(biāo)準(zhǔn)方程為$\frac{x^2}{16}+\frac{y^2}{12}=1$.
設(shè)拋物線C2的標(biāo)準(zhǔn)方程為y2=2px(p>0),則$\frac{p}{2}=c=2$,∴p=4,∴拋物線C2的標(biāo)準(zhǔn)方程為y2=8x.
(2)由題意易得兩條直線的斜率存在且不為0,設(shè)其中一條直線l1的斜率為k,直線l1方程為y=k(x-1),則另一條直線l2的方程為$y=-\frac{1}{k}(x-1)$,聯(lián)立$\left\{\begin{array}{l}y=k(x-1)\\{y^2}=8x\end{array}\right.$得k2x2-(2k2+8)x+k2=0,△=32k2+64>0,設(shè)直線l1與拋物線C2的交點(diǎn)為A,B,則$|AB|=\frac{{4\sqrt{{k^2}+1}•\sqrt{2{k^2}+4}}}{k^2}$,同理設(shè)直線l2與拋物線C2的交點(diǎn)為C,D,則,|CD|=$\frac{4\sqrt{(-\frac{1}{k})^{2}+1}•\sqrt{2(-\frac{1}{k})^{2}+4}}{(-\frac{1}{k})^{2}}$=4$\sqrt{{k}^{2}+1}•\sqrt{4{k}^{2}+2}$
∴四邊形的面積$S=\frac{1}{2}|AB|•|CD|=\frac{1}{2}×\frac{{4\sqrt{{k^2}+1}•\sqrt{2{k^2}+4}}}{k^2}×4\sqrt{{k^2}+1}•\sqrt{4{k^2}+2}$=$\frac{{8({k^2}+1)\sqrt{8{k^4}+20{k^2}+8}}}{k^2}$=$16\sqrt{\frac{{({k^4}+2{k^2}+1)(2{k^4}+5{k^2}+2)}}{k^4}}=16\sqrt{({k^2}+2+\frac{1}{k^2})(2{k^2}+5+\frac{2}{k^2})}$,令$t={k^2}+2+\frac{1}{k^2}$,則t≥4(當(dāng)且僅當(dāng)k=±1時(shí)等號(hào)成立),$S=16\sqrt{t(2t+1)}≥16\sqrt{4•9}=96$.
∴當(dāng)兩直線的斜率分別為1和-1時(shí),四邊形的面積最小,最小值為96.

點(diǎn)評(píng) 本題考查題意方程的求法拋物線的求法,直線與題意以及拋物線的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知圓M:(x+1)2+y2=$\frac{49}{4}$的圓心為M,圓N:(x-1)2+y2=$\frac{1}{4}$的圓心為N,一動(dòng)圓C與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動(dòng)圓C的軌跡方程;
(Ⅱ)過(guò)點(diǎn)(1,0)的直線l與橢圓C交于A,B兩點(diǎn),若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某班對(duì)一次實(shí)驗(yàn)成績(jī)進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將50個(gè)同學(xué)按01,02,03…50進(jìn)行編號(hào),然后從隨機(jī)數(shù)表第9行第11列的數(shù)開(kāi)始向右讀,則選出的第7個(gè)個(gè)體是( 。
(注:表為隨機(jī)數(shù)表的第8行和第9行)
A.02B.13C.42D.44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若集合A={x|3x-x2>0},集合B={x|x<1},則A∩(∁UB)等于( 。
A.(-3,1]B.(-∞,1]C.[1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)y=f(x)的圖象上存在兩個(gè)點(diǎn)A,B,且關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[A,B]為函數(shù)y=f(x)的“友情點(diǎn)對(duì)”,點(diǎn)對(duì)[A,B]與[B,A]可看作同一個(gè)“友情點(diǎn)對(duì)”,若函數(shù)$f(x)=\left\{\begin{array}{l}2,x<0\\-{x^3}+6{x^2}-9x+a,x≥0\end{array}\right.$恰好由兩個(gè)“友情點(diǎn)對(duì)”,則實(shí)數(shù)a的值為( 。
A.-2B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知y=f(x)在定義域R上為減函數(shù),且f(1-a)<f(2a-5),則a的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},則A∪(∁UB)={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,過(guò)圓O外一點(diǎn)P作圓O的切線PA,切點(diǎn)為A,連接OP與圓O交于點(diǎn)C,過(guò)點(diǎn)C作圓O作AP的垂線,垂足為D,若PA=2$\sqrt{5}$,PC:PO=1:3,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示是用模擬方法估計(jì)圓周率π值的程序框圖,m表示估計(jì)結(jié)果,則圖中空白處應(yīng)填入( 。
A.$m=1-\frac{n}{1000}$B.$m=\frac{n}{1000}$C.$m=1-\frac{n}{250}$D.$m=\frac{n}{250}$

查看答案和解析>>

同步練習(xí)冊(cè)答案