【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖像上的點(diǎn)P(1,f(1))處的切線方程為y=﹣3x+1.
(1)若函數(shù)f(x)在x=﹣2時有極值,求f(x)的表達(dá)式;
(2)函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實數(shù)b的取值范圍.

【答案】
(1)解:f′(x)=﹣3x2+2ax+b,

函數(shù)f(x)在x=1處的切線斜率為﹣3,

∴f′(1)=﹣3+2a+b=﹣3,即2a+b=0,

又f(1)=﹣1+a+b+c=﹣2得a+b+c=﹣1.

∵函數(shù)f(x)在x=﹣2時有極值,

∴f′(﹣2)=﹣12﹣4a+b=0,

聯(lián)立 ,

解得a=﹣2,b=4,c=﹣3,

∴f(x)=﹣x3﹣2x2+4x﹣3


(2)解:∵函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,

∴導(dǎo)函數(shù)f′(x)=﹣3x2﹣bx+b在區(qū)間[﹣2,0]上的值恒大于或等于零,

,

解得b≥4,

∴實數(shù)b的取值范圍為[4,+∞)


【解析】(1)f′(x)=﹣3x2+2ax+b,由函數(shù)f(x)在x=1處的切線斜率為﹣3,可得f′(1)=﹣3;又f(1)=﹣1+a+b+c=﹣2;由函數(shù)f(x)在x=﹣2時有極值,可得f′(﹣2)=0,聯(lián)立解得即可.(2)由于函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,可得導(dǎo)函數(shù)f′(x)=﹣3x2﹣bx+b在區(qū)間[﹣2,0]上的值恒大于或等于零,因此 ,解得即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經(jīng)過公園P修一條直路分別與兩條街道交匯于A,B兩處。

1)當(dāng)AB沿正北方向時,試求商業(yè)中心到AB兩處的距離和;

2)若要使商業(yè)中心OAB兩處的距離和最短,請確定A,B的最佳位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,則輸出的S的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項運(yùn)動,得到如下的列聯(lián)表:

算得, .

P(K2k0)

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

則參照附表,得到的正確結(jié)論應(yīng)是( )

A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”

B. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”

C. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”

D. 有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知tanA,tanB是關(guān)于x的方程x2+(x+1)p+1=0的兩個實根.
(1)求角C;
(2)求實數(shù)p的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|lgx|﹣( x有兩個零點(diǎn)x1 , x2 , 則有(
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)的圖象如圖所示.觀察圖象可知函數(shù)y=f(x)的定義域、值域分別是( 。

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)2次拋擲﹣枚骰子(六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為

查看答案和解析>>

同步練習(xí)冊答案